Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
View/Download PDF

Translate this page into:

Viewpoint
151 (
2-3
); 114-115
doi:
10.4103/ijmr.IJMR_864_20

Tracking the impact of interventions against COVID-19 in absence of extensive testing Active surveillance for SARI is urgently needed

Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110 029, India
Licence

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Disclaimer:
This article was originally published by Wolters Kluwer - Medknow and was migrated to Scientific Scholar after the change of Publisher.

Several analyses using mathematical models have made predictions for the number of cases and fatalities due to COVID-19 in India1. Though the recommended public health interventions centred on social distancing based on these predictions, are sensible, the assumptions underlying these may not be accurate. The standard epidemiologic modelling methods [such as the susceptible-exposed-infectious-recovered (SEIR) model] assume transmission at the community level. However, the number of cases reported till recently in India was identified through screening just two populations: travellers from countries where community transmission was already ongoing, and the contacts of COVID-19-positive individuals. In such a situation, the magnitude and the time to community seeding depends on numerous, unknown variables such as the infectivity of asymptomatic individuals with infection, the efficacy of contact tracing and the time to quarantine of successfully traced individuals2. One estimate accounting for some of these variables suggested a time to epidemic initiation of about 45 days3.

Not accounting for this delay in the initiation of community transmission in SEIR models may induce a sense of complacency, and result in premature withdrawal of public health interventions. The standard approach to infectious disease modelling is to calibrate the rate of community seeding to reproduce the death rates due to the disease4. However, for such models to be reliable, active surveillance for severe acute respiratory illness (SARI) should be operational, with all patients undergoing testing for COVID-19, with prompt notification of deaths. The sentinel surveillance system for SARI in place at the moment5, will need to be transformed into an active surveillance system for the duration of the outbreak.

While efforts are on to scale up testing for COVID-19, given the resource constraints, it is unreasonable to expect population-level testing rates such as those seen in countries like South Korea. The most practical approach is to test symptomatic patients presenting to hospitals, and aggressive testing to identify and contain local chains of transmission. However, these data will not be representative of infection in the population as a whole, and cannot inform disease modelling. Random sampling in the community to determine the prevalence of infection over multiple points in time may perhaps be the ideal way to track the course of the epidemic. However, given the large population of India and its heterogeneity, obtaining representative prevalence data may be impractical, and will be very resource and time intensive. Given these logistic challenges, reliable data on deaths due to COVID-19 over time, can be used to obtain useful insights into the trajectory of the epidemic, and the effect of public health interventions.

Time to number of deaths as a measure of the effect of public health interventions: The pattern of cumulative deaths early in the epidemic in different countries provides insights into the success of any suppression or containment measures adopted. The Figure shows the time taken in days, for the number of deaths to increase to 10, from the day the first death was recorded in five indicative countries, contrasted with the time to occurrence of at least 100 deaths. Though the outbreak of infection was rapid in South Korea (time taken to the first 10 deaths was five days), the institution of successful measures to suppress the epidemic resulted in a marked prolongation of the time to the occurrence of at least 100 deaths (24 days)6. This is in contrast to the countries where the epidemic remains uncontrolled (time from 10 to 100 deaths, 5-14 days). The number of deaths in India in the weeks following the initiation of the lockdown will provide an indication of the success of the measures adopted. The data on deaths may be expected to lag behind the infection by about three weeks.

Time to 100 deaths due to COVID-19. The orange bars indicate the time from the first recorded death to 10 deaths. The grey bars show the time taken for the cumulative number of deaths to at least 100 in each of these countries. Source: Ref. 6.
Figure
Time to 100 deaths due to COVID-19. The orange bars indicate the time from the first recorded death to 10 deaths. The grey bars show the time taken for the cumulative number of deaths to at least 100 in each of these countries. Source: Ref. 6.

In conclusion, the existing systems for the surveillance and testing of SARI in the country should be intensified, with provisions for the prompt notification of deaths due to COVID-19. In the absence of reliable information on the incidence and prevalence of infection in the population, the cumulative death rate will provide the only credible indicator of the effect of public health interventions on the trajectory of the epidemic.

Conflicts of Interest: None.

References

  1. . Predictions and role of interventions for COVID-19 outbreak in India. Available from: https://mediumcom/@covind_19/predictions-and-role-of-interventions-for-covid-19-outbreak-in-india-52903e2544e6
  2. , , , , , , . Early dynamics of transmission and control of COVID-19: A mathematical modelling study. Lancet Infect Dis 2020 pii: S1473-3099(20)30144-4
    [Google Scholar]
  3. , , , , , , . Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathematical model-based approach. Indian J Med Res 2020 doi: 104103/ijmrIJMR_504_20
    [Google Scholar]
  4. , , , , , , . Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Available from: https://wwwimperialacuk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020pdf
  5. . ICMR initiated sentinel surveillance to detect community transmission of COVID-19. Available from: https://icmrnicin/sites/default/files/press_realease_files/PressRelease_ICMR_19March2020pdf
  6. . Coronavirus disease (COVID-2019) situation reports. Available from: https://wwwwhoint/emergencies/diseases/novel-coronavirus-2019/situation-reports

    Fulltext Views
    10

    PDF downloads
    8
    View/Download PDF
    Download Citations
    BibTeX
    RIS
    Show Sections
    Scroll to Top