Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
View/Download PDF

Translate this page into:

Student IJMR
147 (
6
); 611-614
doi:
10.4103/ijmr.IJMR_527_17

Environmental surveillance of Legionella pneumophila in distal water supplies of a hospital for early identification & prevention of hospital-acquired legionellosis

Department of Microbiology, All India Institute of Medical Sciences, Raipur, India

For correspondence: Dr Ujjwala Nitin Gaikwad, Department of Microbiology, All India Institute of Medical Sciences, Tatibandh, GE Road, Raipur 492 099, Chhattisgarh, India e-mail: ujugaikwad@gmail.com

Licence

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Disclaimer:
This article was originally published by Medknow Publications & Media Pvt Ltd and was migrated to Scientific Scholar after the change of Publisher.

Abstract

Background & objectives:

Legionella pneumophila, a ubiquitous aquatic organism is found to be associated with the development of the community as well as hospital-acquired pneumonia. Diagnosing Legionella infection is difficult unless supplemented with, diagnostic laboratory testing and established evidence for its presence in the hospital environment. Hence, the present study was undertaken to screen the hospital water supplies for the presence of L. pneumophila to show its presence in the hospital environment further facilitating early diagnosis and prevention of hospital-acquired legionellosis.

Methods:

Water samples and swabs from the inner side of the same water taps were collected from 30 distal water outlets present in patient care areas of a tertiary care hospital. The filtrate obtained from water samples as well as swabs were inoculated directly and after acid buffer treatment on plain and selective (with polymyxin B, cycloheximide and vancomycin) buffered charcoal yeast extract medium. The colonies grown were identified using standard methods and confirmed for L. pneumophila by latex agglutination test.

Results:

About 6.66 per cent (2/30) distal water outlets sampled were found to be contaminated with L. pneumophila serotype 2-15. Isolation was better with swabs compared to water samples.

Interpretation & conclusions:

The study showed the presence of L. pneumophila colonization of hospital water outlets at low levels. Periodic water sampling and active clinical surveillance in positive areas may be done to substantiate the evidence, to confirm or reject its role as a potential nosocomial pathogen in hospital environment.

Keywords

Environmental surveillance
hospital-acquired pneumonia
hospital water outlets
Legionella pneumophila

Legionella pneumophila is a ubiquitous bacterium commonly found in various natural and human-made aquatic environments. They can enter and multiply in hospital water systems in low or undetectable numbers and may result in the acquisition of infection by patients through aspiration of contaminated water or direct inhalation of aerosols. Water outlets, faucets, showers, humidifiers, respiratory devices and nebulizers that have been filled or cleaned with tap water have been reported as potential sources of infection in several cases1.

Establishing diagnosis of Legionella infection considering clinical criteria alone is difficult and warrants some index of suspicion and laboratory diagnosis2. This index of suspicion can be raised by generating knowledge about the possible presence of the organism in the hospital water supplies and outlets3. Legionella colonization of hospital water supplies in >30 per cent of the sampled water outlets merits initiation of specialized laboratory tests for Legionella screening in all patients with hospital-acquired pneumonia3. There are only a few studies on environmental colonization by Legionella from India4567. Considering this, the present study was planned to identify potential environmental sources of Legionella species in a tertiary care hospital so that necessary interventions related to early diagnosis and prevention of hospital-acquired legionellosis can be initiated.

Material & Methods

The study was conducted in the department of Microbiology of All India Institute of Medical Sciences, Raipur, a tertiary care hospital in central India over a period of two months from July to August 2016. The study protocol was approved by the Institutional Ethics Committee.

Thirty water outlets in various patient care areas of the hospital were sampled. From each outlet, water samples and swabs from the inner portions of the outlet pipe were collected amounting for a total of 60 samples. Swabs were collected before water samples from the same source.

The samples were processed as per the protocol8 given by Centers for Disease Control (CDC), Atlanta. To describe briefly, filtrate of water samples and swabs were inoculated after acid buffer treatment on buffered charcoal yeast extract (BCYE) agar with and without antibiotics (polymixin B, cycloheximide, vancomycin). Cultures were examined at intervals until 14 days of incubation. Colonies of Legionella were identified as per the standard protocols8. Faintly stained Gram-negative pleomorphic bacilli (Figure)which failed to grow on blood agar or L- cysteine-free agar on subculture were suspected for Legionella species. The identification was further confirmed by latex agglutination against L. pneumophila antisera 1 and 2-15 by commercially available kit (LK04-HiLegionella Latex Kit; Himedia, Mumbai, India).

Gram-stained morphology of the isolate identified as Legionella pneumophila the figure shows pleomorphic Gram-negative rods after Gram staining using safranine as a decolourizer for prolonged time (10 min) (×1000).
Figure
Gram-stained morphology of the isolate identified as Legionella pneumophila the figure shows pleomorphic Gram-negative rods after Gram staining using safranine as a decolourizer for prolonged time (10 min) (×1000).

The isolates which were suspected to be Legionella but failed to agglutinate by any of the antiserum were subjected to identification by matrix-associated laser desorption ionization-time of flight (MALDI-TOF) at Post-graduate Institute of Medical Education and Research (PGIMER), Chandigarh.

Statistical analysis: Results were calculated in terms of percentage positivity of the water outlets tested positive for Legionella. The proportions were compared using Fisher's exact test.

Results & Discussion

Samples including one water and four swabs, each collected from five (16.6%) different sites (Table), grew colonies suspected of Legionella species. However, only two (both from swabs) of these could be confirmed as L. pneumophila serotype 2-15 giving percentage positivity of 6.66 per cent (2/30). None of the isolates was identified as L. pneumophila serotype 1. The remaining isolates tested by MALDI-TOF were identified as Reyranella massiliensis. The swabs yielded more number of organisms as compared to water samples.

Table Hospital water outlets which were suspected for the presence of Legionella species

Selective BCYE alone could inhibit the growth of environmental bacteria other than Legionella in 53.33 per cent (16/30) of water samples and 30 per cent (9/30) of swabs. Acid buffer treatment was able to limit the number of organisms up to 30 per cent (9/30) on plain BCYE agar (P<0.001). It was useful to limit the growth of organisms in 70 per cent (21/30) samples on BCYE with added antibiotics (P<0.001). Acid buffer treatment resulted in further growth inhibition of the L. pneumophila isolates.

Routine environmental surveillance for L. pneumophila has been a matter of debate over the years. The CDC does not support routine environmental culture for Legionella species in the absence of recognized disease, with the exception of transplant unit, because of the supposedly ill-defined relationship between the presence of the organism in the water system and risk of acquiring the infection9. However, this approach was countered by different prospective studies across the world in which cases of hospital-acquired legionellosis were discovered subsequent to the identification of Legionella colonization of the hospital water supply1011121314151617.

The present study reported positivity of 6.66 per cent for L. pneumophila which was less as compared to the previously reported positivity of 76 and 33 per cent from Indian hospitals47 as well as in the western literature 38 per cent (range 5-83%)2, 3718 and 63 per cent19. Some of the studies have reported positivity rate of <30 per cent (12-18.7%)2021 or even zero6. The positivity cut-off of >30 per cent has been used and confirmed by many researchers to indicate the extent of colonization by L. pneumophila in any hospital warranting active clinical surveillance of legionnaire's disease31121. Colonization in only 6.66 per cent of water outlets obtained in our study does not warrant active screening for the legionnaires’ disease in the hospitalized patients. On the contrary of highest reported serotype 1 of L. pneumophila, we isolated serogroup 2-15 in our study that has been equally reported worldwide21819.

Sampling directly the biofilms using swabs was considered better compared to water in increasing the yield of isolation34. Acid buffer treatment of samples was effective in reducing the contamination; although, it was found to be detrimental to the growth of L. pneumophila. Hence, sampling of biofilms without acid buffer treatment, streaked on selective BCYE agar may be considered as the most sensitive method for recovering Legionella.

Quantification of environmental samples was tried on water samples by measuring the number of colony forming unit/ml of water cultured as doing so may provide information crucial for assessing the risk of transmission and identifying impending outbreaks. However, it did not prove much useful in our study because on most of the occasions, water culture grew confluent growth of mixed bacteria, making it very difficult to quantitate the slowly growing Legionellae. Another limitation of our study was that we did not include hospital-acquired pneumonia cases. Therefore, it was not possible to establish an association between the isolation of Legionellae with hospital-acquired pneumonia.

The extent of Legionella colonization in hospital water outlets was found to be very less precluding the necessity of incorporating specialized Legionella diagnostics in the routine workup of patients with hospital-acquired respiratory infections. However, repeated periodic environmental sampling and active case finding for hospital-acquired legionellosis in areas with positive reports need to be undertaken to confirm or reject its role as a potential nosocomial pathogen in hospital environments.

Acknowledgment

Authors acknowledge Dr Palllab Ray, Professor, Department of Microbiology and the technical staff of Post Graduate Institute of Medical Education and Research, Chandigarh, for their help in identification of the isolates by MALDI-TOF instrument, and thank Ms. Swati Pathak, Shri Nithin Varghese and other technical staff at the department of Microbiology, AIIMS, Raipur, for the technical help extended to carry out this study.

Financial support & sponsorship: The authors thank the Indian Council of Medical Research, New Delhi, India for considering the project for approval under ICMR short term studentship project for the year 2015-2016.

Conflicts of Interest: None.

References

  1. , , , , , . Nosocomial Legionnaires’ disease caused by aerosolized tap water from respiratory devices. J Infect Dis. 1982;146:460-7.
    [Google Scholar]
  2. , , , , , , . Role of environmental surveillance in determining the risk of hospital-acquired legionellosis: A national surveillance study with clinical correlations. Infect Control Hosp Epidemiol. 2007;28:818-24.
    [Google Scholar]
  3. , , . Environmental culturing for Legionella: Can we build a better mouse trap? Am J Infect Control. 2010;38:341-3.
    [Google Scholar]
  4. , , , . Isolation of Legionella pneumophila from clinical & environmental sources in a tertiary care hospital. Indian J Med Res. 2010;131:761-4.
    [Google Scholar]
  5. , , , . Isolation of Legionella pneumophila from patients of respiratory tract disease & environmental samples. Indian J Med Res. 1991;93:364-5.
    [Google Scholar]
  6. , , , , , , . Legionella as a lower respiratory pathogen in North India. Indian J Chest Dis Allied Sci. 1997;39:81-6.
    [Google Scholar]
  7. , , , . The incidence of Legionella pneumophila: A prospective study in a tertiary care hospital in India. Trop Doct. 2000;30:197-200.
    [Google Scholar]
  8. Procedures for the Recovery of Legionella from the Environment. In: Centers for Disease Control and Prevention. Atlanta: U.S. Department of Health and Human Services; .
    [Google Scholar]
  9. . Guidelines for preventing health-care-associated pneumonia, 2003. MMWR Morb Mortal Wkly Rep. 2004;53:1-36.
    [Google Scholar]
  10. , . Resolving the controversy on environmental cultures for Legionella: A modest proposal. Infect Control Hosp Epidemiol. 1998;19:893-7.
    [Google Scholar]
  11. , , , , , , . Environmental cultures and hospital-acquired Legionnaires’ disease: A 5-year prospective study in 20 hospitals in Catalonia, Spain. Infect Control Hosp Epidemiol. 2004;25:1072-6.
    [Google Scholar]
  12. , , , , , , . Routine culturing for Legionella in the hospital environment may be a good idea: A three-hospital prospective study. Am J Med Sci. 1987;294:97-9.
    [Google Scholar]
  13. , , , , . Nosocomial legionnaires disease uncovered in a prospective pneumonia study: Implications for underdiagnosis. JAMA. 1983;249:3184-8.
    [Google Scholar]
  14. , , . Occurrence of nosocomial legionnaires disease in hospitals with contaminated potable water supply. In: , , , eds. Legionella: Current status and emerging perspectives. Washington, DC: American Society for Microbiology; . p. :39-40.
    [Google Scholar]
  15. , , . Prospective study of pneumonia: Unexpected incidence of legionellosis. South Med J. 1986;79:417-9.
    [Google Scholar]
  16. , , , , , , . Nosocomial Legionnaires’ disease discovered in community hospitals following cultures of the water system: Seek and ye shall find. Am J Infect Control. 1998;26:8-11.
    [Google Scholar]
  17. , , , , , , . Nosocomial legionellosis in surgical patients with head-and-neck cancer: Implications for epidemiological reservoir and mode of transmission. Lancet. 1985;2:298-300.
    [Google Scholar]
  18. , , , , , . Environmental surveillance of Legionella pneumophila in two Italian hospitals. Ann Ist Super Sanita. 2010;46:274-8.
    [Google Scholar]
  19. , , , , , , . The high prevalence of Legionella pneumophila contamination in hospital potable water systems in Taiwan: Implications for hospital infection control in Asia. Int J Infect Dis. 2008;12:416-20.
    [Google Scholar]
  20. , , , , . Monitoring of hospital water supplies for Legionella. J Hosp Infect. 1993;24:1-9.
    [Google Scholar]
  21. , , , , , , . Prospective 3-year surveillance for nosocomial and environmental Legionella pneumophila: Implications for infection control. Infect Control Hosp Epidemiol. 2006;27:459-65.
    [Google Scholar]
Show Sections
Scroll to Top