Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
View/Download PDF

Translate this page into:

Commentary
140 (
3
); 333-335

Traditional food & modern lifestyle: Impact of probiotics

Microbiology & Biotechnology Centre, Faculty of Science, The M.S. University of Baroda, Vadodara 392 002, India

Read COMMENTARY-ARTICLE associated with this -

Licence

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer:
This article was originally published by Medknow Publications & Media Pvt Ltd and was migrated to Scientific Scholar after the change of Publisher.

The name probiotic is derived from the Greek phrase ‘pro bios’ which means ‘for life’. It was traditionally associated with fermented foods derived from dairy products, vegetables and fruits. The practice of consuming fermented foods has prevailed across civilizations and strata of societies over centuries, one can, therefore, safely assume that there is an obvious tangible benefit to the consumers of such products. As we now understand, the virtues of these foods are attributed to the probiotic organisms associated with them. The organisms that are best studied and generally regarded as probiotics are species of the bacteria Bifidobacterium, Lactobacillus, and Streptococcus, and also including yeast such as Saccharomyces boulardii12. While knowledge about the beneficial effects of the probiotic organisms and the foods that harbour them was in existence for quite some time, the interest in probiotics has increased recently with the pressing need to find alternative treatment regimens for various ailments and conditions that afflict humans. The increased awareness about lifestyle related diseases has also been one of the reasons for the interest in probiotics and probiotic based food supplementation.

Over the years, the significant role that microbes play in the intestinal ecosystem and thereby have a bearing on the health and well being of the host was well established through animal studies as well as observations made in case of human studies. Reports of fermented foods such as Kefir (Russia), Calpis (Japan), Tofu (Southeast Asia), Kimchi (Korea), Kaymak (Turkey) which are used for health benefits, characteristic of various societies have existed in the literature3. However, the first formal recognition of probiotic organisms was made by Metchnikoff in the early 1900s4. Metchnikoff attributed the exceptional long life of Bulgarian peasants to their consumption of large quantities of ‘sour milk’ containing Lactobacillus bulgaricus. He concluded that the beneficial effect was due to the ability of probiotics to replace the harmful organisms that are found in the gut. The credit however, for translating the use of probiotic organisms commercially for health benefits goes to the Japanese scientist Shirota who in 1930 had isolated and used L. casei for developing the widely consumed probiotic product that goes by the name of ‘yakult’5. Currently however, there are numerous products of various origins and forms containing different organisms available in the market.

Lilly and Stilwell in 19656 were the first to use the term ‘probiotics’ to define substances secreted by one organism that stimulates the growth of another. This was further modified over the years to keep in tune with the existing knowledge of probiotics at a given time, such as the use of live organisms, the ability of the organisms to confer a health benefit, etc. The definition that is now widely accepted is the one given by the WHO in the year 2001 which defines probiotics as “live micro-organisms which, when administered in adequate amounts, confer a health benefit on the host”7.

With the recent upsurge in interest in probiotics and the development of newer techniques, the study of gut microbiota and microbiome and their relevance to human health has been possible and elegantly carried out by various groups. In a recent report by Lin et al8, a comparison of the gut microbiota between healthy children of rural Bangladesh and urban children from the US regardless of their dietary habits was carried out. Using a culture independent approach by analyzing 16S rRNA sequences, the intra-individual and inter personal variations in the faecal microbial communities representing the distal gut of these subjects were studied. It was found that the microbiota from Bangladeshi children was more diverse compared to that of the children from US and that the composition was very different in these two groups. While the Bangladeshi children showed a predominance of Firmicutes (60%) followed by Bacteroidetes (20%) and others including Proteobacteria and Tenericutes, the profile for the American children was totally different. In the American group, the levels of Firmicutes (46%) and Bacteroidetes (43%) were almost similar, followed by Proteobacteria and Tenericutes. Differences were also found within the phyla, e.g. genus Prevotella from Bacteroidetes was more prevalent than Bacteroides in Bangladeshi children compared to the prevalence of Bacteroides in children from the US8.

An apparently similar scenario was evident from studies on children from Burkina Faso and Italy, where it was seen that Prevotella predominated in children associated with a plant based diet while Bacteroides was associated with a diet rich in animal protein and saturated fat. This study was carried out by De Filippo et al9 to address the possibility that diet might influence the gut microbiota. Using an elaborate metagenomic approach, children from two different populations and having different dietary habits were studied. They studied the populations of children from Europe who had a diet rich in animal protein, fat, starch and poor in dietary fiber, and Burkina Faso, a rural African village where the diet is high in fiber content and low in animal protein and fat. It was found that there was a significant enrichment of Bacteroidetes and a reduction of Firmicutes in the children from Burkina Faso compared to those from Europe. Furthermore, unlike the European children, in the case of the former, there was an abundance of organisms from the genera Prevotella and Xylanibacter, both of which are known to harbour genes for cellulose and xylan hydrolysis, thus allowing a better utilization of high fibre based diets which was not the case for the European children. This study was able to establish a correlation between the type of diet and the microbiota profile of the subjects studied. That diet has an important role in developing the microbiota, is also shown by other studies where organisms associated with a high fat, high-carbohydrate diet were demonstrated to promote obesity in gnotobiotic mice10.

Lifestyle related differences in gut microbiota have been well established between obese and lean individuals. In both mice and humans, it has been established that Firmicutes dominate the gut ecology in case of obese individuals compared to those who are lean1112. Additionally, an attempt to alleviate the obese conditions in mice by changing the dietary habits leads to corresponding changes in the gut microbiota. The altered microbiota is similar to what is characteristic of lean individuals, irrespective of the diet regimen or caloric intake that has been provided. Such observations have also been reiterated by studies involving gastric bypass surgical approaches which are carried out to achieve weight loss1314. It is observed that while Firmicutes are the dominant group in obese individuals before undergoing the surgical procedure, their numbers reduce drastically, following the gastric bypass surgery, and is characteristic of that seen in lean individuals.

The findings of these studies mentioned above indicate that while the microbial inhabitants of the gut are predominantly Firmicutes and Bacteriodetes, their relative abundance in an individual may vary. Factors that are responsible for this variation in gut microbiota of individuals could be dietary habits, lifestyle, etc. Therefore, recognition of the fact that one can modulate the health and well being of an individual by enforcing changes in the gut microbial population, has led to an increased interest in probiotics. While there is an increased awareness about probiotics and their potential health benefits, there are several problems and issues that scientists, medical practitioners, society as well as industry have to face. One of the problem lies with the inherent nature of probiotics which is its context specific health attributes as can be seen from the various studies carried out across socio-cultural groups, geographical distributions, and variation during life span, etc. The resultant classification of probiotics not as drugs but as food or diet supplements is, therefore, natural. There is no stringent requirement on demonstration of safety and efficacy.

Given this situation, the best approach to be able to get the maximum benefit out of probiotics would be to resort to traditional fermented foods and the probiotic organisms associated with them. The report in this issue by Balemurgan et al15 is, therefore, significant in this context. They have attempted to establish the probiotic potential of lactic acid bacteria (LAB) commonly found in curd. The authors were able to isolate several Lactobacillus spp. from curd which is widely used in India and especially in southern India. Using standard and established approaches, they have been able to establish the probiotic potential of the LABs that have been isolated from households of a small geographical region. Several of the isolates have been demonstrated to have very good acid and bile tolerance which is essential for these organisms to survive the harsh gastric conditions. Besides, LAB have also been shown to have antimicrobial effects on select pathogens8. Overall, the isolates they have obtained are diverse in terms of their probiotic features and offer access to an array of potential probiotic organisms which form a part of routine dietary habits of that region.

References

  1. , . Probiotics and intestinal inflammatory disorders in infants and children. J Pediatr Gastroenterol Nutr. 2000;30:S34-8.
    [Google Scholar]
  2. , , , , , . Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 2009;4:819-35.
    [Google Scholar]
  3. Fermented foods and beverages of the World. Boca Raton, FL, USA: KCRC Press, Taylor Francis Group; . p. :448.
    [Google Scholar]
  4. , . Lactic acid as inhibiting intestinal putrefaction. In: The prolongation of life: Optimistic studies. London: W. Heinemann; . p. :161-83.
    [Google Scholar]
  5. , , . Probiotics as efficient immunopotentiators: Translational role in cancer prevention. Indian J Med Res. 2013;138:808-14.
    [Google Scholar]
  6. , , . Probiotics: Growth promoting factors produced by microorganisms. Science. 1965;147:747-8.
    [Google Scholar]
  7. . Probiotics in Food-Health and nutritional properties and guidelines for evaluation, FAO Food and Nutrition paper 85. Joint FAO/WHO Expert Consultation on Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, October 2001. Rome: WHO & FAO; .
    [Google Scholar]
  8. , , , , , , . Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013;8:e53838.
    [Google Scholar]
  9. , , , , , , . Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. ;107:14691-6.
    [Google Scholar]
  10. , , , , . Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022-3.
    [Google Scholar]
  11. , , , , , , . A core gut microbiome in obese and lean twins. Nature. 2009;457:480-4.
    [Google Scholar]
  12. , , , , , , . The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.
    [Google Scholar]
  13. , , , , , , . Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. 2009;106:2365-70.
    [Google Scholar]
  14. , , , , , , . Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.
    [Google Scholar]
  15. , , , , , , . Probiotic potential lactic acid bacteria in home made curd in southern India. Indian J Med Res. 2014;140:345-55.
    [Google Scholar]

    Fulltext Views
    15

    PDF downloads
    9
    View/Download PDF
    Download Citations
    BibTeX
    RIS
    Show Sections
    Scroll to Top