Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Perspectives
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Perspectives
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
View/Download PDF

Translate this page into:

Correspondence
145 (
3
); 395-398
doi:
10.4103/ijmr.IJMR_201_15

Role of NEUT-X & NEUT-Y in picking up megaloblastic anaemia on peripheral blood & in differentiating from other macrocytic anaemia

Department of Pathology & Lab Medicine, Medanta - The Medicity Hospital, Gurugram 122 001, Haryana, India

*For correspondence: sachdev05@gmail.com

Licence

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Disclaimer:
This article was originally published by Medknow Publications & Media Pvt Ltd and was migrated to Scientific Scholar after the change of Publisher.

Sir,

Macrocytic anaemia refers to an anaemic state, in which red blood cells (RBC) are larger than normal, recognized by automated RBC indices and confirmed on peripheral blood smear. Macrocytosis is relatively common with a prevalence ranging from 1.7 to 3.6 per cent1. The causes are broadly categorized into megaloblastic and non-megaloblastic. The megaloblastic causes comprise nutritional deficiencies such as vitamin B12/folate deficiency. The prevalence of subnormal vitamin B12 concentration in elderly varies from 3 to 40.5 per cent depending on the cut-off used for defining deficiency of cobalamin level in serum2. The non-megaloblastic causes commonly include drugs, alcoholism, liver diseases and hypothyroidism along with primary bone marrow disorders such as myelodysplasia, leukaemia, multiple myeloma and aplastic anaemia13. The gold standard for differentiating between these two major categories of macrocytic anaemia is based on a comprehensive approach with clinical history, high mean corpuscular volume (MCV) and/or red cell distribution width (RDW), vitamin B12 levels, peripheral blood smear and bone marrow examination.

The MCV represents the mean of the distribution curve and is useful in recognizing macrocytosis. Macrocytosis is considered when MCV is >100 fl (normal range 80-100 fl); the reference range, however, can vary between laboratories and also depends on the age of the patient13. As MCV is the mean which is calculated, it is insensitive to the presence of a small number of macrocytes. Further, macrocytosis can be obscured by concomitant disorders that can cause microcytosis, resulting in masked megaloblastic anaemia (MA), for example, iron deficiency, hereditary elliptocytosis, alpha and beta thalassemia, haemoglobin H disease or fragmentation4. Blood transfusion can also cause spurious masked macrocytosis. In such conditions, it is difficult to pick up MA from MCV alone as the MCV may remain low or normal (as it is mean value). In such cases, RDW will be high due to the variation in the size of RBCs which is again not a very sensitive parameter but can be used as an adjunct for further investigations.

In MA, the peripheral blood smear shows cytopenia with macroovalocytes and hypersegmented neutrophils (>5 lobes in 5% neutrophils, six lobes nuclei or lobe average of >3.5)5. When the MCV is low due to the presence of concomitant microcytic conditions, structural changes in neutrophil may be the only morphologic clue to a megaloblastic aetiology of anaemia4. The macroovalocytes seen in a typical case of MA are a direct result of ineffective haematopoiesis due to defective DNA synthesis1.

The role of NEUT-X and NEUT-Y is well known in myelodysplastic syndrome cases6. In our previous study7, 10 samples were run twice in 24 h to determine the stability. The samples were stored at 2-8°C. The mean values of NEUT-X and NEUT-Y on the 1st and 2nd runs were comparable, suggesting a reasonable stability of both NEUT-X and NEUT-Y over a 24 h period7. This study was undertaken to evaluate the role of NEUT-X and NEUT-Y in detecting MA on peripheral blood and also see whether other forms of macrocytic anaemia can be differentiated from MA.

In the present study consecutive patients fulfilling inclusion criteria were retrospectively selected over a period of one year (September 2013 to July 2014) in a multimodality tertiary care hospital (Medanta- The Medicity hospital) in Gurugram, India. The study comprised three groups: controls, MA and non-megaloblastic macrocytic anaemia (MacA). Control group included 64 randomly selected healthy individuals, which came for regular health check-up with no co-morbidities/complaints. These were compared with 44 patients with MA and 40 with MacA. The patients were diagnosed by following multiparametric approach comprising clinical history, peripheral blood examination including counts and smear, biochemical markers including vitamin B12/folate levels, liver function tests, renal function tests, thyroid function tests and serum iron studies. Where required bone marrow examination for diagnosis of megaloblastic and other macrocytic anaemia cases was also done. The inclusion criteria for MA patients were low vitamin B12/folate levels, anaemia (men <13 g/dl and women <12 g/dl) with or without high MCV and confirmed on bone marrow examination. The inclusion criteria for other macrocytic anaemia cases were normal or high vitamin B12/folate levels, anaemia with MCV >100 fl and proven cause of macrocytosis apart from nutritional deficiency either biochemically or on bone marrow examination. The exclusion criteria were newborns and pregnant women, and those with reticulocytosis, spurious macrocytosis and macrocytosis without anaemia. The study protocol was approved by the institutional ethics committee and written informed consent was obtained from all participants.

NEUT-X and NEUT-Y counts were performed on Sysmex XE–2100, Sysmex, Kobe, Japan. Biochemical markers were done on Vitros 1500 (Johnson & Johnson, USA) Vitamin B12 level was done by competitive assay methodology. The blood samples (3 ml in EDTA) were run within two hours of collection avoiding delayed processing and storage. Three levels of internal quality controls provided by Sysmex, Japan, were run thrice daily as part of internal quality in XE–2100.

Statistical analysis was performed using one-way analysis of variance followed by Dunnett's test for multiple comparisons versus control group. All statistical analyses were performed using SPSS statistical version 16.0 software package (SPSS Inc., Chicago, IL, USA).

The study groups comprised 64 individuals of control group, 44 patients with MA and 40 with MacA. The 40 patients of other macrocytic anaemia included 17 with alcoholism and liver disease, eight with MacA secondary to drug intake, two of chronic renal disease, three of hypothyroidism, five of aplastic/hypoplastic anaemia and five patients with multiple myeloma. The mean age of control, MA and MacA groups were 52.44 ±13.91, 46.21 ±18.13 and 50.28 ±16.17 yr, respectively, indicating no significant difference in the age among the study groups (Table). The mean haemoglobin value in control group was 13.3 g/dl, whereas it was significantly (P<0.001) lower in MA and MacA groups, respectively (P<0.001) (Table). There was no significant difference between MA and MacA groups, indicating that haemoglobin alone cannot be used to differentiate these two categories.

Table Significance of age, haemoglobin level, mean corpuscular volume, red cell distribution width, NEUT-X and NEUT-Y in control (n=64), megaloblastic anaemia (MA) (n=44) and macrocytic anaemia (MAC) (n=40) groups

The mean MCV in MA and MacA groups was 99.10 and 107.0 fl, respectively, significantly (P<0.001) higher than the control group (86.2 fl). MCV of MacA group was significantly higher than MA (P<0.01). The MCV in MA group ranged from 62.9 to 131.4 fl, as 23 of the 44 MA patients (52.3%) had concomitant iron deficiency anaemia, thus lowering the MCV values and giving a wide range. When only NEUT-X was used as the screening parameter, 37 of the 44 MA cases (84.1%) were detected which was significant when compared to the 21 of the 44 MA cases (47.7%) where MCV (>100 fl) was used alone as a screening parameter (P<0.05). The mean value of RDW (CV%) in control group was 14.06 which was significantly (P<0.001) lower than MA and MacA groups (20.84 and 19.82). However, no significant difference was noted in the red cell distribution width (RDW) value between MA and MacA groups. RDW has been suggested as an additional marker with macrocytes in peripheral smear, in picking cases with macrocytosis1. However, in the present study, RDW was useful only when compared to the control group and not with the other MacA.

NEUT-X value was significantly higher in the MA group (1445.5; P<0.001) and MacA group (1354.0; P<0.05) compared to the control group (Table), similar to our previous study7. NEUT-Y value was significantly higher in the MA group (422.18; P<0.001) when compared to the control group, which was also comparable with the previous study7. On comparison between MA and MacA groups, the high values of both parameters (NEUT-X and NEUT-Y) in MA group were significant (P<0.001). Using linear regression formula, poor correlation was noted between MCV and NEUT-X in control, MA and MacA groups and no correlation between MCV and NEUT-Y in the above groups, indicating that NEUT-X and NEUT-Y parameters can be used as independent markers in the pickup of MA cases.

In conclusion, our study shows that higher values of NEUT-X and NEUT-Y in MA patients, in spite of low or normal MCV, high RDW, may be used to not only reveal the masked cases of MA with concomitant iron deficiency but also separate them from the broader macrocytic anaemia group. Peripheral smear remains diagnostic; however, making smear for all the suspicious cases is a cumbersome and tedious procedure. Thus, these parameters emerge as more reliable and sTable parameters in the modern laboratories, which in future may replace the older screening tools. However, prospective studies should be done to evaluate sensitivity, specificity and behaviour of these parameters (whether these return to normal levels) in the early phases of the disease or following treatment of such cases.

Acknowledgment

Authors acknowledge Dr Naresh Trehan and Chairman, Medanta, Dr Vijay Kher, for continuous encouragement and support.

Conflicts of Interest: None.

References

  1. , , , . Megaloblastic anemia and other causes of macrocytosis. Clin Med Res. 2006;4:236-41.
    [Google Scholar]
  2. , , , , , , . Vitamin B12deficiency & levels of metabolites in an apparently normal urban South Indian elderly population. Indian J Med Res. 2011;134:432-9.
    [Google Scholar]
  3. , , . Evaluation of macrocytosis. Am Fam Physician. 2009;79:203-8.
    [Google Scholar]
  4. , , , . Neutrophil myeloperoxidase measurement uncovers masked megaloblastic anemia. Blood. 1990;76:1004-7.
    [Google Scholar]
  5. , , , , , , . Clinical Hematology (8th ed). Philadelphia, PA: Lea & Febiger; . p. :573.
  6. , , , , , , . Routine diagnostic procedures of myelodysplastic syndromes: Value of a structural blood cell parameter (NEUT-X) determined by the Sysmex XE-2100™. Int J Lab Hematol. 2010;32(6 Pt 1):e237-43.
    [Google Scholar]
  7. , , , , , , . Picking up myelodysplastic syndromes and megaloblastic anemias on peripheral blood: Use of NEUT-X and NEUT-Y in guiding smear reviews. Int J Lab Hematol. 2015;37:e48-51.
    [Google Scholar]

    Fulltext Views
    15

    PDF downloads
    9
    View/Download PDF
    Download Citations
    BibTeX
    RIS
    Show Sections
    Scroll to Top