Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Perspectives
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Author’ response
Author’s reply
Authors' response
Authors#x2019; response
Book Received
Book Review
Book Reviews
Centenary Review Article
Clinical Image
Clinical Images
Commentary
Communicable Diseases - Original Articles
Correspondence
Correspondence, Letter to Editor
Correspondences
Correspondences & Authors’ Responses
Corrigendum
Critique
Current Issue
Editorial
Errata
Erratum
Health Technology Innovation
IAA CONSENSUS DOCUMENT
Innovations
Letter to Editor
Malnutrition & Other Health Issues - Original Articles
Media & News
Notice of Retraction
Obituary
Original Article
Original Articles
Perspective
Perspectives
Policy
Policy Document
Policy Guidelines
Policy, Review Article
Policy: Correspondence
Policy: Editorial
Policy: Mapping Review
Policy: Original Article
Policy: Perspective
Policy: Process Paper
Policy: Scoping Review
Policy: Special Report
Policy: Systematic Review
Policy: Viewpoint
Practice
Practice: Authors’ response
Practice: Book Review
Practice: Clinical Image
Practice: Commentary
Practice: Correspondence
Practice: Letter to Editor
Practice: Obituary
Practice: Original Article
Practice: Pages From History of Medicine
Practice: Perspective
Practice: Review Article
Practice: Short Note
Practice: Short Paper
Practice: Special Report
Practice: Student IJMR
Practice: Systematic Review
Pratice, Original Article
Pratice, Review Article
Pratice, Short Paper
Programme
Programme, Correspondence, Letter to Editor
Programme: Commentary
Programme: Correspondence
Programme: Editorial
Programme: Original Article
Programme: Originial Article
Programme: Perspective
Programme: Rapid Review
Programme: Review Article
Programme: Short Paper
Programme: Special Report
Programme: Status Paper
Programme: Systematic Review
Programme: Viewpoint
Protocol
Research Correspondence
Retraction
Review Article
Short Paper
Special Opinion Paper
Special Report
Special Section Nutrition & Food Security
Status Paper
Status Report
Strategy
Student IJMR
Systematic Article
Systematic Review
Systematic Review & Meta-Analysis
Viewpoint
White Paper
View/Download PDF

Translate this page into:

Correspondence
142 (
4
); 492-494
doi:
10.4103/0971-5916.169225

Antimicrobial susceptibility pattern of Burkholderia cepacia complex & Stenotrophomonas maltophilia over six years (2007-2012)

Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India
Centre for Microbial Biotechnology, Panjab University, Chandigarh 160 014, India

† For correspondence: r_vg@yahoo.co.uk

Licence

This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Disclaimer:
This article was originally published by Medknow Publications & Media Pvt Ltd and was migrated to Scientific Scholar after the change of Publisher.

Sir,

Non-fermenting Gram-negative bacteria (NFGNB) are a threat to the health care community because these cause opportunistic infections in critically ill or immunocompromised patients. Following Acinetobacter species and Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and Stenotrophomonas maltophilia are the third and fourth common NFGNB among the positive blood cultures at a tertiary care institute in north India12. The treatment of infections caused by these organisms is challenging because of high intrinsic and acquired resistance to all commonly used antibiotics including the antipseudomonal drugs3. The increasing incidence of infections by these organisms along with the rising drug resistance warrants a close monitoring of the antimicrobial susceptibility of these organisms.

We present the analysis of the antimicrobial susceptibility profiles from March 2007 to December 2012 of 186 Bcc isolates (63 isolates from 2007 to 2009, 89 isolates from 2010 to 2011 and 34 isolates in 2012) and 125 S. maltophilia isolates (38 isolates from 2007 to 2009, 54 isolates from 2010 to 2011 and 33 isolates in 2012) obtained from various clinical specimens (blood, cerebrospinal fluid, sputum, endotracheal aspirate, bronchoalveolar lavage and pus) at the Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India. All the NFGNB isolates were identified by conventional biochemical reactions. Gram-negative, motile, NFGNB were identified further by the use of oxidase test, triple sugar iron agar with lead acetate paper strip and decarboxylase tests4. Molecular identification and typing of Bcc were done by recA polymerase chain reaction-restriction fragment length polymorphism (recA PCR-RFLP)4. Drug susceptibility was tested by Kirby-Bauer disk diffusion test (DD)5 against co-trimoxazole (TMP-SMX, 1.25 µg/23.75 µg), ceftazidime (30 µg), tetracycline (30 µg)/minocycline (30 µg), levofloxacin (5 µg) for S. maltophilia and additionally against meropenem (10 µg) for Bcc following Clinical Laboratory Standards Institute (CLSI) guidelines6. The minimum inhibitory concentrations (MIC) of selected number of isolates were determined by agar dilution method as per CLSI guidelines6 against minocycline (sensitive, S≤4 and resistant R≥16 μg/ml), levofloxacin (S≤2 & R≥8 μg/ml), ceftazidime (S≤8 & R≥32 μg/ml), chloramphenicol (S≤8 & R≥32 μg/ml) for Bcc, and minocycline (S≤4 & R≥16 μg/ml), levofloxacin (S≤2 & R≥8 μg/ml), co-trimoxazole (S≤2/38 & R≥4/76 μg/ml), chloramphenicol (S≤8 & R≥32 μg/ml), ceftazidime (S≤8 & R≥32 μg/ml) for S. maltophilia. The proportional data were analyzed by Z-test for proportions.

In 2012, by DD 100 per cent of the Bcc isolates were susceptible to minocycline, 71 per cent to co-trimoxazole, 71 per cent to meropenem and 59 per cent to ceftazidime. A significant decrease in susceptibility of Bcc for ceftazidime has been observed in 2012 (59%) when compared with previous years (83 and 85%, P<0.001). There was no significant decrease in susceptibility to co-trimoxazole and meropenem over the years (Fig. 1).

Percentage susceptibility of Bcc isolates by disc diffusion. ***P<0.001 compared with values in 2007-2009 and 2010-2011.
Fig. 1
Percentage susceptibility of Bcc isolates by disc diffusion. ***P<0.001 compared with values in 2007-2009 and 2010-2011.

In 2012, by DD 100 per cent of the S. maltophilia isolates were susceptible to minocycline, 100 per cent to levofloxacin, 83 per cent to co-trimoxazole and 25 per cent to ceftazidime. The sensitivity of S. maltophilia to co-trimoxazole (70 to 91%) and levofloxacin (83 to 100%) showed significant variation in contrast to ceftazidime which remained low over the years (25 to 40%). The year-wise susceptibility of the S. maltophilia isolates is shown in Fig. 2.

Percentage susceptibility of Stenotrophomonas maltophilia isolates by disc diffusion.
Fig. 2
Percentage susceptibility of Stenotrophomonas maltophilia isolates by disc diffusion.

All Bcc and S. maltophilia isolates were sensitive to minocycline though the susceptibility to tetracycline tested in the previous years was less indicating minocycline as a better drug. The MIC values were calculated for 30 S. maltophilia and 60 Bcc isolates. In case of S. maltophilia the percentage of isolates which had MICs within the susceptible range was as follows: 100 per cent for minocycline and levofloxacin, 97 per cent for co-trimoxazole, 64 per cent for chloramphenicol and 50 per cent for ceftazidime. In case of Bcc the percentage of isolates which had MICs within the susceptible range was as follows: 75 per cent for minocycline, 27 per cent for levofloxacin and ceftazidime, 13 per cent for chloramphenicol.

Co-trimoxazole had most consistent antimicrobial activity against both Bcc and S. maltophilia. In a study carried out on NFGNB isolates collected globally789, co-trimoxazole was found to be the most active antibiotic tested against both of these organisms. Both the organisms were highly susceptible to minocycline (majority tested had MIC ≤ 4 µg/ml). S. maltophilia isolates showed lower MIC than the Bcc isolates. Similar variations in the antimicrobial susceptibility between species or between different genera among NFGNB has been documented in a previous study7. Based on the findings of the present and the previous studies7, levofloxacin can be considered as a good alternative in treating S. maltophilia infections. These findings emphasize the importance of correct identification of these organisms and their antimicrobial susceptibility as Bcc is known to be intrinsically resistant to polymyxin and S. maltophilia to carbapenems and both are resistant to aminoglycosides. Routine monitoring of antimicrobial susceptibility pattern of these organisms is mandatory for future policy in the management of such infections.

References

  1. , , , . Changing susceptibility patterns of nonfermenting Gram-negative bacilli. Indian J Med Microbiol. 2012;30:485-6.
    [Google Scholar]
  2. , , , , . Emerging resistance of non-fermenting gram negative bacilli in a tertiary care centre. Indian J Pathol Microbiol. 2011;54:666-7.
    [Google Scholar]
  3. , . Resistance in non fermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Med. 2006;119(6 Suppl 1):S29.
    [Google Scholar]
  4. , , , , , , . Identification of lysine positive non-fermenting gram negative bacilli (Stenotrophomonas maltophilia and Burkholderia cepacia complex) Indian J Med Microbiol. 2009;27:128-33.
    [Google Scholar]
  5. , , , , . Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493-6.
    [Google Scholar]
  6. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 22nd Informational Supplement M100-S22. Wayne, USA: CLSI; .
    [Google Scholar]
  7. , , . Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents. 2005;25:95-109.
    [Google Scholar]
  8. , , , , , , . Resistance of the Burkholderia cepacia complex to fosmidomycin and fosmidomycin derivatives. Int J Antimicrob Agents. 2011;38:261-4.
    [Google Scholar]
  9. , , , , . Comparative in vitro activity of sulfametrole/trimethoprim and sulfamethoxazole/trimethoprim and other agents against multiresistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69:1050-6.
    [Google Scholar]

    Fulltext Views
    19

    PDF downloads
    9
    View/Download PDF
    Download Citations
    BibTeX
    RIS
    Show Sections
    Scroll to Top