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Combination therapy with three drug regimens for human immunodeficiency virus (HIV) infection 
significantly suppresses the viral replication. However, this therapeutic impact is restricted by adverse 
drug events and response in terms of short and long term efficacy. There are multiple factors involved in 
different responses to antiretrovirals (ARVs) such as age, body weight, disease status, diet and heredity. 
Pharmacogenomics deals with individual genetic make-up and its role in drug efficacy and toxicity. In 
depth genetic research has provided evidence to predict the risk of developing certain toxicities for which 
personalized screening and surveillance protocols may be developed to prevent side effects. Here we 
describe the use of pharmacogenomics for optimal use of HAART (highly active antiretroviral therapy).
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Introduction 

	 Introduction of highly active antiretroviral 
therapy (HAART) has drastically reduced mortality 
associated with HIV infection, but variability in 
efficacy and toxicity is challenging. The advances in 
molecular biology has changed pharmacogenetics to 
a great extent to develop pharmacogenomics1. Host 
genetic factors are accountable for the variability 
in antiretroviral (ARV) response along with sex, 
body mass index, heredity and disease progression. 
Sometimes genetic variability is solely responsible 
for these variations2,3. A single-nucleotide change is a 
DNA sequence variation occurring commonly within 
a population at the same locus of the gene which may 
alter functioning of the protein product extensively. 
Single-nucleotide change hardly affects functioning of 
the protein produced by that gene, but some changes 

affect functioning. Single nucleotide polymorphisms 
(SNPs) are significant with respect to genes of drug 
metabolic pathway including enzymes, drug carrier 
proteins involved in pharmacokinetics and disease 
progression. The influence of SNPs on personal 
responses to pharmacotherapy is complicated. Genetic 
variations in pathways of drug absorption, disposition, 
metabolism and excretion (ADME) contribute to 
inter-patient differences. Therefore, genes encoding 
for transport proteins, drug metabolizing enzymes 
or nuclear receptors have been the main targets of 
HIV pharmacogenomic studies. So far, numerous 
associations of SNPs with susceptibility to ARV drug 
adverse reactions or risks of virological failure have 
been reported4. This review focuses on some important 
aspects of pharmacogenomics to maximize efficacy 
and minimize toxic effects of HAART.
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Pharmacogenomics 

	 Combination antiretroviral therapy (cART) for 
HIV - HAART or cART has improved the prognosis 
of HIV infection close to normal life expectancy. With 
HAART, different combinations of antiretroviral drugs 
are available for untreated and treated individuals. 
There are six categories of drug regimens available as 
follows: (1) Nucleoside reverse transcriptase inhibitors 
(NRTIs), (2) Non-nucleoside reverse transcriptase 
inhibitors (NNRTIs), (3) Protease inhibitors (PIs), 
(4) Integrase inhibitors (IIs), (5) Fusion inhibitors 
(FIs), and (6) Chemokine receptor antagonists. 
The choice of treatment is mainly influenced by 
HIV disease stage, co-morbidities, co-medication 
with potential drug-drug interactions, pregnancy or 
pregnancy potential, expected cART toxicity, and 
results of genotypic resistance testing and synergism/
antagonism of the combination on HIV virus life cycle. 
Table I gives summary of some key reported genetic 
variants for HAART. Table II provides information on 
pharmacogenetics of adverse reactions due to HAART.

1. Nucleoside reverse transcriptase inhibitors (NRTIs): 
NRTI is a nucleoside analogue antiretroviral drug and 
its chemical structure constitutes a modified version 
of a natural nucleoside. These inhibit viral replication 
of retroviruses by stopping extension of oligomer due 
to absence of 3’ hydroxyl group essential for addition 
of incoming new nucleotide. This prevents further 
synthesis of viral nucleic acid by interfering with the 
reverse transcriptase enzyme45 (Fig. 1). These drugs 
get activated on endocytosis after phosphorylation to 
form active triphosphate compound (pro-drugs). The 
known drug toxicities are linked with lipid metabolism, 
liver steatosis and lactic acidosis. Additional evidence 
relates NRTI drugs to disruption of mitochondrial 
function, oxidative stress and peripheral neuropathy46. 

	 Zidovudine (ZDV) (Azidothymidine, AZT) - 
Thymidine analogue - ZDV has been prescribed after 
U.S. Food and Drug Administration (FDA) approval in 
1987 as a part of drug regimen to treat HIV infection, 
till it was found more harmful than tenofovir47. ZDV 
was found to be associated with severe anaemia in 
a randomized trial in untreated HIV patients using 
efavirenz (EFV) in addition to ZDV + lamivudine 
(3TC) / tenofovir (TDF) + emtricitabine (FTC) where 
ZDV was removed in 5.5 per cent population under 
study48. A previous study showed that 16.2 per cent 
of patients developed ZDV induced anaemia in the 
population of eastern India49, 58 per cent of the patients 
on ZDV showed reduced viral load (<400 copies/ml) 

as compared to 71 per cent cases on TDF only because 
ZDV had to be withdrawn in 11 per cent (vs 5%) of the 
cases after drug adversities in 144 wk49. Observed ZDV 
related toxicities include drop in haemoglobin level and 
neutrophils count, and nausea due to gastrointestinal 
disturbances within a few weeks on initiation of the 
trial. Also, fat deposition in upper and lower extremities 
was significantly reduced on ZDV treatment50. 

	 A pharmacogenetic study has reported higher 
levels of ZDV-triphosphates (up to 49%) in HIV cases 
heterozygotes for ABCC4 G3724A on ZDV treatment 
as compared to wild type GG homozygote51. Another 
variant ABCB1 GT or TT has shown significantly 
reduced levels of HIV viral load than that in individuals 
having wild type GG genotype52. Kwara et al53 have 
shown 196 per cent oral drug clearance associated with 
UGT2B7*1c carriers on ZDV therapy when compared 
to non carriers. These studies emphasize on extensive 
analysis using large cohorts for understanding 
potential role of pharmacogenomic factors in ZDV 
pharmacokinetics and pharmacodynamics5. 

	 Stavudine (d4T) - Thymidine analogue - Stavudine 
(2’,3’-didehydro-2’,3’-dideoxythymidine) was made 
available for patients showing virological failure or 
intolerance to ZDV after its approval in May 199654. 
After one year, it became the preferred drug for ART. 
But it was found to be associated with susceptibility 
to body fat side effects. Therefore, in 2009, the World 
Health Organization (WHO) restricted its use due to 
long-term, irreversible side effects55. 

	 Lamivudine (3TC) - Cytidine analogue - 
Lamivudine (2’,3’-dideoxy-3’-thiacytidine) is another 
nucleotide analogue used in combination therapy for 
delaying developments of acquired immunodeficiency 
syndrome (AIDS) and hence, avoiding disease 
related complications or cancer.  Higher intracellular 
concentrations of 3TC-triphosphate have been reported 
to be associated with multidrug resistance protein 4 
(MRP4) T4131G change and MRP2 polymorphism49. 

	 Tenofovir disoproxil fumarate (TDF) - Adenosine 
analogue - Tenofovir, one of the most effective and 
commonly prescribed antiretroviral drugs belongs to 
a class of nucleotide reverse transcriptase inhibitors 
(NtRTIs). Nucleotide analogues have phosphate group 
in addition to pentose and nucleic base of nucleoside. 
Unlike nucleoside analogues, NtRTIs are chemically 
preactivated and thus require less processing in the 
body. A single G>A substitution at 1249 nucleotide 



Table I. Summary of genetic variants associated with antiretroviral (ARV) pharmacokinetics, toxicity and efficacy 

Class Drug Gene Polymorphisms Clinical impact (Efficacy/Toxicity) Ref.

NRTIs ZDV ABCC4 A1203A Higher intracellular ZDV - TP 5

UGT2B7*1c c.735A>G 196% Higher ZDV oral clearance 5

ABCB1 G2677T Greater reduction of HIV RNA 5

d4T POLG R964C and E1143G 6

3TC ABCC4 T4131G Higher intracellular 3TC - TP 6

ABC HLA-B HLA-B*57:01 NA Toxicity - HSR 7,8

HLA complex P5 335T>G Toxicity - HSR 9-12

TFV
(NtRTI)

ABCC2 CATC
Haplotype (-24, 1249, 3563, 3972) 
24CC

Toxicity - KTD 13,14

ABCC4 3463A>G Higher intracellular TFV-DP 15

ABCC4 -669C>T Toxicity - KTD 14

NNRTI EFV CYP2B6 516C>T,
785A>G and 983T>C

Higher plasma levels/CNS adverse 
effects

16-24

ABCB1 3435C>T Possible influence in plasma EFV 
levels

25-28

NVP CYP2B6 516C>T and
983T>C

Higher plasma levels 17,19,
 29-31

ABCB1 3435C>T - 32,33

HLA-DR HLA- DRB1*0101 Toxicity - HSR 34,35

HLA-C HLA-Cw*8 Toxicity - HSR 36

HLA-B HLA-B3505 Toxicity - skin rash 37

PIs ATV UGT1A1 *28 Toxicity - Gilbert ́s syndrome and 
Higher levels of bilirubin

38-40

ABCB1 3435C>T and
2677G>T

Lower plasma levels 39, 41

NR1I2 63396C>T Lower plasma levels 42

RTV ABCA1, APOA5, 
APOC3, APOE, CETP

- - 6

IDV UGT1A1*28 - - 6

CYP3A4*1B /
CYP3A5*1

II RAL ABCB1 3435C>T Allele T is associated with lower 
RAL plasma exposure

43

EI MVC CCR5 ∆32 - 6

ZDV, zidovudine; d4T, stavudine; 3TC, lamivudine; ABC, abacavir; TFV, tenofovir; EFV, efavirenz; NVP, nevirapine; ATV, atazanavir; 
RTV, ritonavir; IDV, indinavir; RAL, raltegravir; MVC, maraviroc; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, non-
nucleoside reverse-transcriptase inhibitor; PI, protease inhibitor; II, integrase inhibitor; EI, entry inhibitor; HSR, hypersensitivity; KTD, 
kidney tubular dysfunction; DP, diphosphate; NA, not applicable; TP, triphosphate
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Table II.  Pharmacogenetics of adverse reactions due to  HAART
Regimen Pharmacogenetics Side effects

NNRTI – based regimen

2 NRTIs + 1 NNRTI

(1)	 ZDV/d4T + 3TC + NVP
(2)	 ZDV/d4T + 3TC + EFV
(3)	 TFV + 3TC + NVP/EFV

ZDV 
d4T 
3TC 
ABC
TFV

EFV

NVP

3724G>A, c.735A>G, G2677T 
R964C, E1143G
T4131G
335T>G
CATC Haplotype (-24, 1249, 3563, 
3972) 24CC, 3463A>G, -669C>T 
516C>T, 785A>G, 983T>C, 3435C>T
516C>T, 983T>C,3435C>T, HLA- 
DRB1*0101, HLA-Cw*8 and 
HLA-B3505

(i)	 Low genetic barrier to resistance
(ii)	 Cross-resistance among NNRTIs
(iii)	 Potential for hepatic and skin toxicity 

(NVP>EFV)
(iv)	 Potential teratogenicity (EFV)
(v)	 High potential for interactions with 

other medications

Triple NRTI – based regimen

(1)	 AZT + 3TC + ABC
(2)	 d4T + 3TC + ABC

ZDV
d4T
3TC
ABC

3724G>A, c.735A>G, G2677T 
R964C, E1143G
T4131G 
335T>G

(i)	 Lower efficacy/high rates of clinical 
failure than EFV-based regimens

(ii)	 ABC hypersensitivity

PI - based regimen

(1)	 2 NRTIs + ATV/r or LPV/r
(2)	 2 NRTIs + NFV

ZDV
d4T
3TC
ABC
ATV

3724G>A, c.735A>G, G2677T 
R964C, E1143G
T4131G
335T>G 
UGT1A1*28, 3435C>T, 2677G>T, 
63396C>T

(i)	 Higher pill burden
(ii)	 Gastrointestinal side effects common 
(iii)	 Metabolic complications common
(iv)	 Refrigeration requirements for some 

PI drug (RTV, LPV/r)
(v)	 High chances for interactions with 

other medications 
ZDV, zidovudine; d4T, stavudine; 3TC, lamivudine; ABC, abacavir; TFV, tenofovir; EFV, efavirenz; NVP, nevirapine; ATV, atazanavir; 
RTV, ritonavir; NFV, nelfinavir; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, non-nucleoside reverse-transcriptase 
inhibitor; HLA, human leucocyte antigen; PI, protease inhibitor
Source: 4, 44 

of ATP-binding cassette, sub-family C, member 2 
(ABCC2) gene is reportedly linked with TDF adverse 
reaction causing renal tubulopathy6. Interestingly, TDF 
is not a substrate for MRP2, but for MRP415. More 
recently, a naïve association between ABCC4 3463A>G 
genotype and renal toxicity has been reported showing 
tenofovir concentrations 35 per cent higher in carriers 
of the 3463G variant44. 

	 Abacavir (ABC) - Guanosine analogue - 
Hypersensitivity to ABC occurs in about five per cent 
of HIV infected patients usually by the second week of 
ABC treatment. In some cases, hypersensitivity reaction 
is seen by six weeks56. A polymorphism in HLA gene 
HLA-B*5701 needs to be screened prior to initiation 
of ABC treatment to avoid hypersensitivity reaction. 
An inexpensive laboratory test is available to detect 
this gene57. HLA B57 frequency is 5-20 per cent in 
India58. An Indian study58 demonstrated that HLA B17 
frequency in HIV patients on antiretroviral therapy was 
due to the different composite ethnic groups studied. 
The testing for HLA B17 antigen along with HLA 
B*5701 allele subtype can be used as pharmacogenetic 

testing to prevent abacavir hypersensitivity reaction 
among Indian patients58. This testing is now mandatory 
in many countries before prescribing abacavir9. HCP5 
335 T>G polymorphism in P5 gene of HLA is preferred 

Fig. 1. Mode of action of nucleoside reverse transcriptase inhibitor 
(NRTI). On incorporation of NRTI the chain is terminated. ssDNA, 
single strand DNA.

Uncompleted
ssDNA

RT

NRTIsNRTIs
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SNP marker over HLA B*5701 for ABC sensitivity 
due to simplicity and economicity10-12.

2. Non-nucleoside reverse transcriptase inhibitors 
(NNRTIs): Non-nucleosides are directly active drugs as 
against prodrug NRTIs. These prevent HIV replication 
by targeting the enzyme reverse transcriptase, binding 
to a site near to but different from the active site for 
substrate. It decreases DNA synthesis drastically 
(Fig.  2). ADME pathways genes are studied extensively 
focusing on CYP450 enzyme4. Detoxification of 
NNRTI takes place in liver by CYP450 enzyme. 
SNPs associated with these isoenzymes play crucial 
role in inter-individual differences in metabolism and 
disposition of NNRTIs59. Polymorphisms result in 
decreased expression of enzymes and their activity in 
liver microsomes. As a result, there is considerable inter-
individual variability in NNRTI ADME. Also, genes 
encoding drug transporters and HLA are considered 
in the pharmacogenetic studies of NNRTI. SNPs in 
MDR1 gene, which encodes for P-glycoprotein (P-
gp) affect oral absorption and desorption of NNRTIs. 
P-glycoprotein acts as a NNRTI carrier. The association 
between variants of MDR1 gene and NNRTI plasma 
concentrations has been studied comprehensively44. 

	 Nevirapine (NVP) - In 1997, NVP was approved 
as NNRTI60. In developing countries, it is the preferred 
first line drug in combination with two NRTIs due to 
its efficacy, moderate price and adjustable dosage60. 
NVP causes elevation of liver enzymes which may 
occasionally be severe. About 15-20 per cent patients 

experience rash and NVP needs to be withdrawn 
in about 7 per cent of them61. NVP-induced rashes 
were reported in 2.14 per cent of HIV positive 
individuals from India62. It is noteworthy that liver 
damage may appear after many months63. NVP 
induced hypersensitivity is associated with HLA-
DRB1 allele and MDR1 gene polymorphism32,34,64. 
The polymorphism ABCB1-3435C>T is linked with a 
decreased risk of hepatotoxicity in patients receiving 
NVP25,30. NVP plasma concentration is affected by 
G516T and 983 T>C substitutions in CYP2B6 gene. 
Also, significantly higher NVP plasma levels are 
reported in black patients heterozygous for T983C 
SNP16,17. Although sex, age, body mass index, habits, 
habitat and pathological liver condition are major 
criteria in influencing pharmacokinetics of NVP, but in 
most of the studies only body weight is included29,44,57. 

	 Efavirenz (EFV) - EFV is the first line drug for 
untreated HIV infected cases. EFV shows a narrow 
therapeutic range and there is a potential risk of high 
level of therapeutic concentrations that are related with 
virological failure or neurological manifestations. It 
is metabolized by CYP2B6 in liver. The G516T SNP 
in CYP2B6 (CYP2B6*6) is reported to have a major 
impact on the pharmacokinetics and pharmacodynamics 
of EFV65. Black patients are predisposed to the CNS 
effects due to high prevalence of the genotype CYP2B6 
- 516TT18,19. Also, there is SNP variability due to 785 
A>G, 983 T>C, 593 T>C and 1132 C>T substitutions 
in CYP2B6 rendering slow metabolization of EFV65. 
This affects its pharmacokinetics with increased drug 
levels, which result in CNS events or virological 
failure, necessitating CYP2B6 allele genotyping. 
Efavirenz disrupts sleep architecture66.

3. Protease inhibitors (PIs): HIV hijacks host genetic 
code on invading CD4 cell and utilizes host cell machinery 
for its replication. The viral gag-pol polyprotein is 
excised into active protein particles of newly formed 
virus by viral protease, a molecular scissor. This step 
is inhibited by blocking the protease enzyme using PIs 
by preventing a proteolytic splicing and results into 
non-infectious virus particles (Fig. 3). Toxic effects of 
PIs include lipodystrophy, dyslipidaemia, tolerability 
problems and gastrointestinal disturbances67. Often 
drug interactions are substantiated due to PIs68. PIs 
are mostly metabolized by CYP3A4. PIs act both as 
inhibitors of and substrate for CYP3A4. CYP3A4 also 
metabolizes both simvastatin and lovastatin. When PIs 
act as inhibitor of CYP3A4, the levels of simvastatin 

Fig. 2. Mode of action of non-nucleoside reverse transcriptase 
inhibitor (NNRTI). NNRTIs block enzyme activity by binding 
directly to reverse transcriptase (RT) enzyme.
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and lovastatin may increase drastically69,70. This in 
turn increases the risk of toxicity of liver and skeletal 
muscle71. 

	 Ritonavir (RTV) - Ritonavir is included in 
combinational regimen because it blocks host enzymes 
involved in metabolism of PIs. It is the most powerful 
of all the PIs even in low doses. The primary role 
of RTV in boosted PI regimens is to improve the 
pharmacokinetics of the second PI. RTV inhibits 
host enzymes of drug metabolic pathways causing 
their levels to rise in bloodstream, and increasing 
efficacy of other PIs with reduced dose and frequency 
rendering them more compliant. It also blocks its own 
metabolism by inhibiting cytochrome P45072. Liver 
enzymes metabolize protease inhibitors only when their 
activity is modified. All PIs decrease hepatic enzyme 
activity. These increase cholesterol and triglycerides 
levels, cause abnormal fat deposition in various parts 
of the body, and diabetes. These can be associated with 
polymorphisms of genes like ATP-binding cassette 
transporter A1 (ABCA1), apolipoprotein A5 (APOA5), 
apo lipoprotein C3 (APOC3), apo lipoprotein E 
(APOE), and cholesterol ester transfer protein (CETP)73. 
APOE and APOC3 variant alleles are associated with 
lipodystrophy among HIV patients. Genetic screening 
can reduce risk of hypertriglyceridaemia associated 
with RTV74,75. 

	 Atazanavir (ATV) - In March 2004, ATV arrived in 
market as daily prescription in single dose. Increased 
lipid levels associated with this drug make oneself 
susceptible to cardiovascular event74. Fifty per cent 

of cases on ATV show rise in bilirubin levels and 
above one third have grade 3-4. This is also true 
for lipodystrophy75,76. Some patients even develop 
jaundice as hepatic conjugation is hampered due to a 
mechanism similar to Gilbert’s Syndrome. A genetic 
predisposition is identified77. This side effect is provoked 
by competitive inhibition of UDP glucuronosyl 
transferase 1 family polypeptide A1 (UGT1A1), the 
microsomal enzyme causing glucuronidation, which 
allows bilirubin excretion. Inconsequential rise needs 
withdrawal of ATV in a few patients due to overt 
jaundice78. A previous Indian study has reported 
increased prevalence of of (TA)7/(TA)7 genotype in 
neonates (allele frequency 0.366)38. UGT1A1 promoter 
variant is associated with hyperbilirubinaemia79. The 
presence of SNP UGT1A1*28 is strongly associated 
with the occurrence of jaundice because of decreased 
enzyme activity52,57,80. 

	 Indinavir (IDV) - Highly penetrating IDV reaches 
genital compartments and CNS, but it is not preferred 
nowadays39. This medicine needs to be used with 
caution in India due to presence of extensive ‘renal 
stone belt’ to avoid the risk of nephrolithiasis81,82.

4. Integrase inhibitors (IIs): HIV integrase is an 
important enzyme in its replication through integrating 
viral DNA with host genome83. Integrase inhibitor is a 
desirable anti-HIV drug as integrase enzyme is absent 
in human cells; its selective inhibition without side 
effects is possible (Fig. 4). 

	 Raltegravir (RAL) - Raltegravir is an aphthyridine 
carboxamide derivative that inhibits integrase. Integrase 
catalyses the step-wise process of integrating HIV-1 

Fig. 3. Mode of action of protease inhibitors (PIs). PIs are substrate analogue (mimic protein cutting site), and prevent generation of new 
viral proteins.
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DNA into the host genome. In the process, assembly of 
integrase with viral DNA forms stable pre-integration 
complex, which follows endonucleolytic processing of 
the viral DNA ends, and joining of the viral and host 
DNAs. Covalent bonding takes place in 5’ phosphate 
groups exposed on nicking cellular DNA strands of 
host and viral DNA to produce provirus. RAL does not 
allow pre-integration complex to bind to host DNA84. It 
prevents replication of HIV-2 and acts against R5 and 
X4 tropic viruses. RAL is a substrate of the P-gp, and 
consequently, polymorphisms in transport proteins may 
explain the large intra- and inter-individual variations 
of RAL exposure85,86. A recent study in Spanish 
HIV RAL-cohort reported that the polymorphism 
at ABCB1-3435C>T was associated with RAL 
concentrations43. Patients carrying CT or TT genotypes 
displayed lower median RAL concentrations than those 
with the CC genotype. Although pharmacokinetic/
pharmacodynamics (PK/PD) analyses do not suggest 
a threshold RAL concentration associated with 
reduced efficacy, patients carrying CT/TT genotypes 
at the P-gp gene might be more prone to virological 
failure4,43. UGT1A1*28/*28 genotype is associated 
with higher RAL plasma concentrations compared to 
that of UGT1A1*1/*1 genotype87,88.

5. Fusion inhibitors (FI): Thirty-six amino acids long 
peptide of the FI enfuvirtide (T-20) is similar to a 
portion of gp41, necessary for binding to heptad repeat 
1 (HR1). It interferes with HR1 and HR2 interaction and 
thereby, inhibiting the conformational change crucial 

for viral fusion to CD4 cells. Decreased efficacy of 
T-20 is associated with a single amino acid substitution 
in HR157. The drug is efficacious with hardly any side 
effects. However, its high cost, intolerance on long 
term use, complex mode of administration and limited 
pharmacokinetic properties are the limiting factors, 
and in future, studies should focus on these aspect to 
enhance its clinical advantage89.

6. Entry inhibitors (EI): HIV enters human body 
through fusion of viral envelope proteins with binding 
domain on host CD4 + (cluster of differentiation  4) 
cell. EIs interfere with this fusion step and stop virus 
from entering into the cell, thereby restricting HIV 
from infecting a cell and multiplying. Theoretically 
inhibitors can interfere with every step of HIV entry 
into the host cell. EIs mainly target either the viral 
envelope glycoprotein gp120 or gp41 or the C-C 
chemokine receptor CCR5 or CXCR4 receptors on a 
CD4 cell surface90. Intracellular HIV inhibition is not 
possible by EIs as against other drug classes. 

	 Maraviroc (MVC) - Maraviroc belongs to entry 
inhibitors called as CCR5 receptor antagonist. HIV 
makes entry into host cell using a CCR5 receptor 
present on CD4+ immune cells. MVC prevents 
entry of HIV by inhibiting its fusion with the CCR5 
receptors (Fig. 5). It allosterically binds to CCR5 by 
inducing conformational changes within CCR5 and 
hence, inhibiting its binding to viral gp12091. It acts 
against CCR5 tropic viral strains but is inactive against 
CXCR4 tropic HIV strains. CCR5-Δ32 is an allele of 
CCR5. An allele Δccr5  of the  β-chemokine receptor 
gene CCR5 has been found to confer protection against 
HIV-192. In Europeans the prevalence of this allele 
is 5-14 per cent but is uncommon in Africans and 
Asians93. This protective allele was found to be absent 
in majority of Indians. Its sporadic occurrence in 
southern and northern parts of India presume Caucasian 
admixture92. The HIV R5 entry is prevented because 
of Δ32 deletion leading to a non-functional receptor. 
Homozygosity for this allele gives strong protection 
against HIV infection whereas the heterozygosity is 
associated with milder disease progression94. However, 
genetic variations in the CCR5 gene have not been 
shown to affect virological response to MVC95. On 
the other hand, MVC is substrate of CYP3A4 and 
P-gp; hence, dose adjustment is frequently required 
when co-administered with drugs that alter its 
pharmacokinetics96,97. MVC is identified as substrate 
of the transport protein OATP1B1 and the variation 
521T>C is linked with higher MVC plasma levels98.

Fig. 4. Integrase inhibitors (IIs) - mode of action. IIs inhibit enzyme 
activity (bind to enzyme) and prevent insertion of proviral DNA.
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Thus, the only genetic test that is mandatory to perform 
before starting MVC treatment is the determination of 
viral tropism4,99.

Conclusion and clinical relevance

	 The objective of any therapy is to maximize the 
therapeutic outcome and to minimize the side effects. 
HAART represents very effective ART but is brought 
with innumerable side effects. The side effects like 
cutaneous hypersensitivity may be avoided with proper 
genetic testing which predisposes to susceptibility such 
as HLA-B*5701 associated ABC adverse reaction. 
Similarly, certain drugs like maraviroc may not be 
prescribed to HIV positive individuals with CCR5 tropic 
HIV. However, a large number of HAART drugs show 
change in pharmacokinetics due to variations in genes 
of drug metabolic pathway enzymes like CYP450, 
ATP binding cassette and UGTA1. Individualized 
approach to personalized HAART is influenced by 
host factors and is known as pharmacogenomics. It is 
also influenced by certain viral characteristics and the 
drug administered. Application of pharmacogenomics 
with understanding of medicine, viral characteristic 
of HIV is at the doorstep to guide the personalized 
prescription in which the right medication will be 
given to the right person. Several measures need 
to be taken for application of pharmacogenetic 
research in making a genetic test available for public. 
Many factors affect successful translation such as 
pharmacodynamics and pharmacokinetic properties of 

drug adversities, laboratory facilities, quality assurance 
and quality control (QA and QC) measures and type 
of tests100. The reported associations have to undergo 
stringent validation in independent, ethnically diverse 
populations having highest number of HIV positive 
individuals.
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