
 Folate, a water soluble B vitamin, plays a key 
role in one-carbon metabolism. It is an essential 
cofactor for de novo biosynthesis of purine and 
thymidine nucleotide1,2 (Fig.) with special reference to 
methylation reactions and epigenetic influences (DNA, 
chromosomes and mutations)3. Folate deficiency causes 
anaemia and is considered to be of aetiopathogenetic 
importance in several cardiovascular diseases, neural 
tube defects and other congenital defects, adverse 
pregnancy outcomes, neuropsychiatric and cognitive 
disorders, and cancer4,5. Folate antagonists like 
methotrexate (MTX) and 5 fluorouracil target folate 
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Background & objectives: Many pharmacologically-relevant polymorphisms show variability among 
different populations. Though limited, data from Caucasian subjects have reported several single 
nucleotide polymorphism (SNPs) in folate biosynthetic pathway. These SNPs may be subjected to racial 
and ethnic differences. We carried out a study to determine the allelic frequencies of these SNPs in an 
Indian ethnic population. 
Methods: Whole blood samples were withdrawn from 144 unrelated healthy subjects from west India. 
DNA was extracted and genotyping was performed using PCR-RFLP and Real-time Taqman allelic 
discrimination for 12 polymorphisms in 9 genes of folate-methotrexate (MTX) metabolism.
Results: Allele frequencies were obtained for MTHFR 677T (10%) and 1298 C (30%),  TS 3UTR 0bp 
(46%), MDR1 3435T and 1236T (62%), RFC1 80A (57%), GGH 401T (61%), MS 2756G (34%), ATIC 
347G (52%) and SHMT1 1420T (80%) in healthy subjects (frequency of underlined SNPs were different 
from published study data of European and African populations). 
Interpretation & conclusions: The current study describes the distribution of folate biosynthetic pathway 
SNPs in healthy Indians and validates the previous finding of differences due to race and ethnicity. Our 
results pave way to study the pharmacogenomics of MTX in the Indian population.
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metabolism. Folate analogue are also widely used 
to treat cancer, autoimmune diseases, psoriasis, and 
infections. 

 Recently, several studies have described SNPs of 
the genes involved in folate metabolism6 and their role 
in related diseases7-10. Though inadequate, data also 
suggest that these SNPs may influence therapeutic 
outcome by playing a critical role in the metabolism 
of drugs targeting folate biosynthetic pathway6,11. 
Importantly, racial and ethnic differences in the 
occurrence of SNPs have been proposed12-14. 
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 The data on the distribution of SNPs (folate pathway) 
in the Indian population are sparse. Any study on the 
frequencies of SNPs in disease must be preceded by 
their distribution in the healthy population. The present 
study aims to determine the allelic frequency of SNPs 
across intracellular folate metabolic pathway in healthy 
Indian subjects. Allele frequencies were also compared 
with previously reported frequencies by others to 
address the racial and inter-ethnic differences. 

Material & Methods
study population: One hundred and forty four unrelated 
healthy subjects of either sex were enrolled in the study 
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Fig. Intracellular pathway of folate metabolism with highlighted critical pathways of methotrexate (MTX) entry, effect and efflux. Folate enters cell 
as methyl tetrahydrofolate (MTHF) through a folate carrier receptor system and is converted into tetrahydrofolate (THF). MTHF is the co-substrate 
for production of methionine (from homocysteine) and polyamines. Inside cell, folates as polyglutamates (PG) create an inter-convertible pool (ICP) 
which promotes several reactions with 1-carbon fragments wherein methyl and formyl groups are donated (primarily by serine to glycine) and this 
leads to various nucleic acid/nucleotide biosynthesis. All 1-carbon transfer reactions regenerate THF. The exception to the latter is production of 
dihdrofolate (DHF) from folate substrate while converting deoxyuridylate (dUMP) to dTMP. An important enzyme dihydrofolate reductase (DHFR) 
converts DHF to THF which is the essential active form of folate in the ICP. Several drugs, including MTX block DHFR to produce a relative state 
of intracellular folate deficiency while the tissues are rich in folates. MTX is a competitive inhibitor of DHFR and enters the cell through reduced 
folate carrier (RFC) active transport system. MTX forms PG intracellularly by the enzyme folylpolygluatamate synthase (FPGS); another enzyme 
gamma glutamyl hydrolase (GGH) reverses this process to cause MTX efflux from the cell. The PG forms retain MTX inside the cell as MTXPG 
and is responsible for its several effects besides inhibiting DHFR, (i) it inhibits thymidylate synthetase (TS) which converts deoxyuridylate (dUMP) 
to dTMP in the de novo pyrimidine pathway, (ii) though not a direct target of MTX, methylenetetrahydrofoate reductase (MTHFR) to an important 
enzyme in the folic acid pathway which is influenced by the MTX effects on the intracellular folate pool, (iii) it affects purine synthesis pathways 
by inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltranferase (ATIC) to cause intracellular accumulation of 5-aminoimidazole-
4-carboxamide ribonucleotide (AICAR). AICAR inhibits adenosine deaminase (ADA) and AMP deaminase to cause intracellular accumulation of 
adenosine and related nucleotides which then get dephosphorylated to finally result in increased extracellular adenosine. Adenosine is a potent anti-
inflammatory agent. Methionine synthase (MS) converts homocysteine (if excess can confer cardiac risk) to methionine required for several cellular 
DNA/RNA metabolism pathways. Serine hydroxymethyltransferase1 (SHMT1) operates on the DHF-THF pathway. ATP-binding cassette (ABC) 
family (7 distinct families A-G) of transporter proteins are responsible for MTX efflux from the cell. Multidrug resistant protein1 (MDR1), an active 
transporter system, is related to the ABC system in expelling several organic anions including MTX from the cell.  

from the outpatient rheumatology referral service of 
Centre for Rheumatic diseases, Pune (west India) from 
April 2007- January 2008. There were 70 males and 74 
females with mean age (SD) of 23.22 (5.3) years. The 
study protocol was approved by the Ethics Committee 
of Centre for Rheumatic Diseases, Pune. Subjects 
willing to participate provided consent as per the 
guidelines from the Institutional ethics Committee. 

Genotype analysis: Post-consent, peripheral blood 
sample (4-5 ml) was drawn from each healthy 
subject, and genomic DNA was extracted using 
Miller’s protocol15. A total of 12 polymorphisms in 9 



Table I.  The allele frequency of SNP across intracellular folate metabolic pathway in Indian population in the current study and comparison 
with others
Polymorphism Present study 

healthy subjects
n=144

European14 

healthy subjects
n=95

African14

healthy subjects
n=95

Indian20

healthy subjects
n=77

MTHFr C677T
C allele 0.90 0.68 0.96 NA
T allele 0.10 0.32** 0.04*

MTHFr A1298C
A allele 0.70 0.72 0.87 NA
C allele 0.30 0.29 0.13**

Ts 5UTR
2R allele 0.36 NA NA NA
3R allele 0.63 
Ts 3UTR
6bp allele 0.52 0.73 0.44 NA
0bp allele 0.46 0.27** 0.56
MDr1 C3435T
C allele 0.38 0.46 0.90 0.35
T allele 0.62 0.54 0.10** 0.65
MDr1 C1236T
C allele 0.38 0.54 0.86 0.28
T allele 0.62 0.46 0.14** 0.72*

rFC1 G80A
G allele 0.43 NA NA 0.72
A allele 0.57 0.28**

GGH-401
C allele 0.38 NA NA 0.75
T allele 0.61 0.25**

Ms A2756G
A allele 0.66 NA NA NA
G allele 0.34 
MTrr A66G
A allele 0.50 NA NA NA
G allele 0.50 
ATIC C347G
C allele 0.48 NA NA NA
G allele 0.52 
sHMT1 C1420T
C allele 0.20 NA NA NA
T allele 0.80 

P *<0.05 **<0.001 compared to present study; NA, Data not available 

genes of MTX metabolism (including transporters) 
were studied. The genes analyzed were MTHFr: 
Methylenetetrahydrofoate reductase; Ts: Thymidylate 
synthase; rFC1: reduce folate carrier1; Ms: Methionine 
synthase; sHMT1: serine hydroxymethyltransferase1; 
MDr1: Multidrug resistant protein1; GGH: γ glutamyl 
hydrolase; ATIC: Aminoimidazol carboxamide 
ribonucleotide transformylase; MTrr: Methionine 

synthase reductase. Genotyping was performed 
using PCR-RFLP technique for MTHFr A1298C 
(rs1801131) and C677T (rs1801133), TS 5’UTR repeat 
and 3’UTR deletion, rFC1G80A (rs1051266), Ms 
A2756G (rs1805087), MDr1C3435T (rs1045642) and 
C1236T (rs1128503), GGH C401T (rs3758149), MTrr 
A66G (rs1801394) polymorphisms (oligonucleotides-
Integrated Biotechnologies, restriction endonucleases-
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New England Biolabs)16-18. Real-time Taqman allelic 
discrimination assay (Applied Biosystems, CA, USA) 
was used for genotyping ATIC C347G (rs2372536), 
sHMT1C1420T (rs17829445) polymorphisms19. After 
restriction digestion, digested products were visualized 
on 2 per cent agarose gel except for 5’UTR repeats of Ts 
which were directly visualized after the PCR. Real-time 
Taqman allelic discrimination assays were performed 
according to protocols provided by the manufacturer 
(Applied Biosystems, CA, USA). Samples containing 
mutants were reanalyzed to ensure the accuracy of the 
method. There was 100 per cent reproducibility.

statistical analysis: Statistical analysis was performed 
using the Graph Pad Prism statistical software (San 
Diego CA. USA). Allele frequencies were determined 
for 12 polymorphisms in nine genes in the folate-
MTX metabolic pathway in 144 healthy subjects. The 
frequency of each allele in the study population is given 
in the Table I. Differences in allele frequencies between 
healthy subjects and other ethnic groups were measured 
by Fisher exact test. P< 0.05 was considered statistically 
significant. The observed genotype frequencies of 
polymorphisms studied were compared with expected 
frequencies according to Hardy-Weinberg equilibrium 
(HWE) using χ2 tests.

Results & Discussion

 We examined allele frequencies for 12 
polymorphisms in folate and MTX metabolism 
among healthy subjects and compared them with the 
allele distribution in other ethnic groups (Table I). 
Allele frequencies obtained for the present study were 
MTHFr 677T (10%) and 1298 C (30%), Ts 3UTr 0bp 
(46%), MDR1 3435T and 1236T (62%), rFC1 80A 
(57%), GGH 401T (61%), Ms 2756G (34%), ATIC 
347G (52%) and sHMT1 1420T (80%). The complete 
genotype distribution for healthy subjects is represented 
in Table II. Genotype frequencies for all 12 SNPs were 
in HWE for healthy subjects. 

 Healthy subjects from our study were compared 
with healthy subjects from European, African and 
Indian population (Table I). MTHFr 677T variant allele 
frequency in European population (32%, P<0.001) 
was higher than Indian healthy subjects (10%) while 
TS 3 UTR 0bp (deletion) polymorphism was lower in 
European (27%, P<0. 001) than Indian (46%). There was 
no difference in distribution of MTHFr 1298C, MDr1 
1236T and MDr1 3435T variant allele frequencies 
between Indian and European healthy subjects. The 
occurrence of MTHFr 677T (4%, P<0.001), MTHFr 

Table II. Genotype distribution of 12 SNPs in folate metabolism 
among healthy subjects
Polymorphism Healthy subjects n=144

Observed 
frequency 

Expected 
frequency by 

Hardy-Weinberg 
law 

P value

MTHFR C677T

0.79

CC 0.81 0.80
CT 0.17 0.19
TT 0.02 0.01
MTHFR A1298C

0.72

AA 0.48 0.51
AC 0.46 0.41
CC 0.06 0.08
TS5UTR*

0.22

2R/2R 0.19 0.13
2R/3R 0.34 0.45
3R/3R 0.46 0.40
TS 3UTR

 0.25

0bp/0bp 0.23 0.29
6bp/0bp 0.47 0.50
6bp/6bp 0.31 0.21
MDR1 C3435T

0.95

CC 0.14 0.15
CT 0.49 0.47
TT 0.37 0.38
MDR1 C1236T

 0.88

CC 0.13 0.15
CT 0.50 0.47
TT 0.37 0.38
RFC1 G80A

0.07

GG 0.27 0.19
GA 0.33 0.49
AA 0.40 0.32
MSA2756G

0.54

AA 0.41 0.43
AG 0.51 0.45
GG 0.08 0.12
MTRR A66G

0.98

AA 0.26 0.25
AG 0.49 0.50
GG 0.25 0.25
GGH-401

 0.95

CC 0.14 0.15
CT 0.49 0.47
TT 0.37 0.38
ATIC C347G

1.00

CC 0.23 0.23
CG 0.50 0.50
GG 0.27 0.27
SHMT1 C1420T

0.62

CC 0.02 0.04
CT 0.36 0.32
TT 0.62 0.64
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1298C (13%, P<0.001), MDr1 3435T (10%, P<0.001) 
and MDr1 1236T (14%, P<0.001) variant alleles was 
significantly lower in Africans as against Indian healthy 
subjects. 

 Comparison of our healthy subjects with Indian 
study from north India reveals that there was 
significant difference in the occurrence of GGH 
401T, rFC1 80A and MDr1 1236T variant alleles. 
The occurrence of GGH 401T (61%) andrFC1 
80A (57%) in our healthy subjects was higher than 
north Indian subjects 25 and 28 per cent (P<0.0001) 
respectively while MDr1 1236T was higher in 
north Indians (72%) than our healthy subjects 
(62%, P<0.05). Thus the current report supports 
the previous findings that the allele or haplotype 
frequencies of several important polymorphisms in 
folate pathway vary with race12-14. 

 The allele frequencies of MTHFr 1298C and 
677T, TYMs 3’ UTR deletion and MDr1 3435T and 
1236T in healthy subjects are different in Indian 
subjects as compared to Europeans and Africans12. 
The latter conclusion is limited by the fact that 
we could only find data on five polymorphisms in 
reports of European and African healthy population. 
We have also compared our data with north Indian 
population20. There are differences in the occurrence 
of GGH 401T, RFC1 80A and MDR1 1236T variant 
alleles within Indian population. This intra-ethnic 
difference can be because Indian population is a 
conglomeration of multiple culture and evolutionary 
histories. The evolutionary antiquity of Indian ethnic 
groups and subsequent migration from central Asia, 
west Asia and southern China has resulted in a rich 
tapestry of socio-cultural, linguistic and biological 
diversity21. 

 SNPs have been reported per se to impair 
folate-mediated one-carbon metabolic pathways 
and contribute to increased risk of several disorders 
of folate deficiency22-24. Folate antagonist MTX 
is among the best-tolerated disease-modifying 
antirheumatic drugs (DMARDs) used in the treatment 
of RA, but is confounded by unpredicted interpatient 
variability in clinical response and toxicity6,25. To 
unravel the probable associations among variations 
in drug pathway alleles and MTX response in Indian 
rheumatoid arthritis (RA) patients, it is essential 
to first explore the relationship between the genes 
coding for folate metabolic pathway and ethnicity. 
The results of the current study are a step forward in 

that direction. 

 To our knowledge this is the first report on 
12 polymorphisms in 9 genes of folate metabolic 
pathway in Indian population. We have not analyzed 
polymorphisms in folypolyglutamate synthase 
(FPGs) and dihydrofolate reductase (DHFr). We 
report ethnic differences in the SNPs in genes coding 
folate biosynthetic metabolic intracellular pathway. 
It may not be appropriate to extrapolate the findings 
of genetic associations influencing folate antagonist 
treatment response in subjects belonging to Caucasian 
and African ethnicity to the Indian population. Thus 
knowledge of allelic frequency distribution within 
a population can be useful in optimizing doses for 
therapeutic efficacy, identifying potential risk groups 
for adverse drug reactions and explaining therapeutic 
failures. 
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