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Background & objectives: Vaccination will play an important role in meeting the end tuberculosis (TB) 
goals. While certain vaccine candidates in advanced stages of clinical trials raise hope for the future 
availability of new tools, in the immediate term, there is also increasing interest in Bacille Calmette–
Guérin revaccination among adults and adolescents as a potential strategy. Here, we sought to estimate 
the potential epidemiological impact of TB vaccination in India.
Methods: We developed a deterministic, age-structured, compartmental model of TB in India. Data from 
the recent national prevalence survey was used to inform epidemiological burden while also incorporating 
a vulnerable population who may be prioritized for vaccination, the latter consistent with the burden 
of undernutrition. Using this framework, the potential impact on incidence and mortality of a vaccine 
with 50 per cent efficacy was estimated, if rolled out in 2023 to cover 50 per cent of the unvaccinated 
each year. Simulated impacts were compared for disease- vs. infection-preventing vaccines, as well as 
when prioritizing vulnerable groups (those with undernutrition) rather than the general population. A 
sensitivity analyses were also conducted with respect to the duration, and efficacy, of vaccine immunity.
Results: When rolled out in the general population, an infection-preventing vaccine would avert 12 per 
cent (95% Bayesian credible intervals (Crl): 4.3-28%) of cumulative TB incidence between 2023 and 
2030, while a disease-preventing vaccine would avert 29 per cent (95% Crl: 24-34%). Although the 
vulnerable population accounts for only around 16 per cent of India’s population, prioritizing this group 
for vaccination would achieve almost half the impact of rollout in the general population, in the example 
of an infection-preventing vaccine. Sensitivity analysis also highlights the importance of the duration and 
efficacy of vaccine-induced immunity.
Interpretation & conclusions: These results highlight how even a vaccine with moderate effectiveness 
(50%) could achieve substantial reductions in TB burden in India, especially when prioritized for the 
most vulnerable.
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Ending tuberculosis (TB) will require not just 
substantial acceleration in diagnosis and treatment 

but also mass prevention of TB disease1. Although 
preventive therapy offers one approach to prevention 
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using licensed regimens, at present, WHO guidelines 
include only risk groups such as people living 
with HIV and household contacts of TB patients2. 
Mathematical modelling suggests that, even in high-
burden countries, full coverage of these risk groups 
would typically reduce incidence and mortality by 
only around 10-15 per cent over 10 years3. Expanding 
coverage beyond these groups presents challenges 
because current regimens last for three months, posing 
a burden on TB programmes as well as on patients with 
no outward symptoms of TB4.

For these reasons, there has been increasing 
recognition of the need for an effective TB vaccine1,5 
that can be deployed at a population level for mass 
prevention. Currently, the only licensed vaccine 
against TB is Bacille Calmette–Guérin (BCG), the 
live-attenuated vaccine form of Mycobacterium bovis6. 
In use for almost a century, the main benefit of the 
BCG vaccine is to protect young children from severe 
forms of TB when provided at birth7. There are several 
TB vaccine candidates currently in development as 
alternatives8, with three for adults and adolescents in 
phase III trials. However, given the size and complexity 
required for advanced trials for TB vaccines, it may 
be some years before any of these candidates reach 
licensure or widespread deployment.

In this context, attention has returned to BCG, and in 
particular the potential benefits of BCG revaccination, 
or ‘boosting’ among adolescents. Early studies of 
revaccination in sub-Saharan Africa did not show any 
detectable reduction in TB9, but it is unclear how well 
these results would generalize to settings such as India. 
Indeed, a recent study among adults in India showed 
BCG revaccination to be immunogenic10. In another 
recent study, a retrospective analysis of the Chingleput 
BCG vaccination trial in 196811, BCG revaccination 
was associated with a 36 per cent reduction in the 
hazard rate of developing TB over a 15 yr period12. 
In an earlier study in South Africa, sustained QFT 
conversion (considered a correlate of TB infection) 
was reduced by BCG revaccination13. Further work, 
including prospective randomized trials in India, 
will be invaluable in developing this evidence base. 
Nonetheless, as India prepares for a large-scale push 
to end TB, it is important to anticipate the impact that 
effective TB vaccination may have, on the TB epidemic 
in India. In this study, we address this question using 
a mathematical model of TB transmission dynamics, 
calibrated to the TB epidemic in India.

Our work builds on previous modelling analysis14-16 
by incorporating data from India’s recent TB prevalence 
survey17 to reflect the most recent estimates for TB 
burden in the country, as well as for the prevalence 
of latent TB17,18. Moreover, in a diverse country of 
over 1.3 billion people, targeting may be necessary 
in the initial stages of vaccine rollout, for example, 
in vulnerable groups with a higher prevalence of TB 
than the general population. The potential benefits of 
prioritizing vaccination in such vulnerable groups is 
highlighted in this article.

Material & Methods

Outline of the model: A compartmental, deterministic 
model of TB in India was developed using data from 
the recent National TB Prevalence Survey in India 
(2019-2021) report (Fig. 1). The model incorporated 
two different age groups: those below 15 yr of age 
(‘children’) and those aged 16 and above (‘adults’). 
The model took account of the healthcare system in 
India, distinguishing public and private healthcare 
sectors. In addition, the model incorporated 
vaccination status, dividing the adult population into 
three groups; (i) those who have not received adult 
vaccination; (ii) those who received adult vaccination 
and were immune and; (iii) those whose immunity 
from adult vaccination has waned. The model also 
incorporated a ‘vulnerable group’. As priority groups 
for vaccination, such vulnerable groups may include 
those with higher levels of latent TB infection, those 
at higher risk of breakdown to active disease given 
infection, those with a higher prevalence of active 
TB or a combination of all three. In practice, they 
might involve, for example, those with comorbidities 
exacerbating TB, slum dwellers, etc. As an illustrative 
example, we parameterized the vulnerable population 
to be consistent with undernutrition, a major risk factor 
for TB in India19. Because of the immunosuppressive 
effect of undernutrition20, it was assumed that those 
with latent TB and low body mass index (BMI) had 
a rate of progression from latent to active TB greater 
than those with normal BMI; we treated the relative 
rate as a parameter to be calibrated. For simplicity it 
was assumed that undernutrition was not associated 
with an increased risk of acquiring infection.

Data and calibration: Calibration to the available 
data (Table) were performed using adaptive Bayesian 
Markov chain Monte Carlo (MCMC), performing 
10,000 iterations. After discarding the burn-in and 
taking a ‘thinned’ subsample, we drew 250 samples 
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from the posterior density. Computing all model outputs 
(e.g. future incidence) using each of these samples, we 
estimated point values as the 50th percentile, and 95 per 
cent Bayesian credible intervals (Crl) as being bounded 
by the 2.5th and 97.5th percentiles.

Modelling interventions: Following previous work14, 
we concentrated on vaccination among adults and 
adolescents, i.e. those aged 16 yr and above. Because 
analysis of BCG revaccination was conducted against 
a clinical endpoint of symptomatic disease rather 
than infection12, it is not yet clear whether its mode of 
action is an ‘infection-preventing’ effect, a ‘disease-
preventing’ one (i.e. protecting those with latent TB 
from developing active disease) or both. Hence, we 
modelled two scenarios, both with 50 per cent efficacy: 

an infection-preventing vaccine and a disease-
preventing vaccine. In addition, assuming an infection-
preventing vaccine, we modelled the following 
scenarios: (i) annually vaccinating 50 per cent of those 
who have not yet received adult vaccination in the 
vulnerable population and (ii) annually vaccinating 
50 per cent of those who have not yet received adult 
vaccination in the general population. We assumed for 
simplicity that vaccination coverage would be scaled 
up in a linear way, to reach these levels in three years 
between 2023 and the end of 2025. We also assumed 
that vaccination would have the same efficacy in 
those with undernutrition as in the general population, 
modelled as equivalent proportional reductions in the 
rate of progression from latent to active TB. Further, 
we assumed that vaccination only extends to those 
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Fig. 1. Schematic illustration of the model. Compartments in red show infectious states. In the left-hand panel, blue-shaded ‘layers’ for the first 
three compartments (uninfected and latent states) represent different levels of vaccination status: progression between these different levels 
is shown on the right-hand side. Note: For clarity of illustration, the following features were not shown in this representation: age structure 
(stratifying all compartments into those <15 yr of age and >15 yr), TB-related mortality, reinfection and relapse and spontaneous cure.

Table. Data used for model calibration
Indicator Value Source
Prevalence per 100,000 population, 2020 312 (286‑337) National TB prevalence survey17

Of prevalent TB, per cent on treatment 12 (9.0‑16)
Of prevalent TB, per cent that had not sought care 6.6 (5.6‑7.6)
Notifications per 100,000 population, 2019 125 (113‑138) Programmatic data, allowing for ±10 per cent uncertainty
Mortality, 2019 37 (34‑40) WHO global TB report21

Relative risk of TB, undernutrition vs. normal BMI 3 (2‑4)
Per cent of population having undernutrition 16 (13‑19) Food and agriculture organization data22

Population prevalence of LTBI (per cent) 25 (20‑30) National TB prevalence survey17

Per cent of population being 15 years old or younger 29 (25‑33) World bank estimates23

Numbers in parentheses show 95 per cent uncertainty intervals. BMI, body mass index; TB, tuberculosis; LTBI, latent TB infection; 
WHO, World Health Organization
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without prior vaccination as adults, thus excluding 
those in whom vaccine-induced immunity had waned. 
We assumed that vaccine-induced immunity lasts for 
10 yr on an average but performed a sensitivity analysis 
to this assumption, as well as to different scenarios for 
efficacy, coverage and duration of scale-up.

Study tool: This model was coded and implemented 
in Matlab, version R2021a software (MathWorks Inc. 
Natick, MA, USA).

Results

The results of model calibration are shown in 
Supplementary Figures 1 and 2. Figure 2 shows the 
impact of different mechanisms of vaccine action with 
the same efficacy and levels of coverage in the general 
population, illustrating that a disease-preventing vaccine 
would have a stronger impact on the incidence, between 
now and 2030, than an infection-preventing vaccine. In 
particular, an infection-preventing vaccine would avert 
12 per cent [95% Bayesian credible intervals (Crl): 
4.3-28%] of cumulative incidence over this period, while 
a disease-preventing vaccine would avert 29 per cent 
(95% CrI: 24-34%). In terms of mortality, an infection-
preventing vaccine would avert 8.5 per cent (95% Crl: 
2.8-20%) of cumulative TB deaths between now and 
2030, while a disease-preventing vaccine would avert 
21 per cent (95% CrI: 19-26%) during this period.

Figure 3 shows the impact of targeting 
vulnerable groups, concentrating on the example 

of an infection-preventing vaccine. The scenario 
of vaccinating the general population is equivalent 
to that shown in Figure 2. However, targeting the 
vulnerable population would avert five per cent of 
cumulative incidence (95% Crl: 1.8-14) and 3.8 per 
cent of cumulative mortality (95% credible intervals: 
1.2-10).

Figure 4 shows the results of sensitivity analysis, 
illustrating the strong roles played by the duration of 
vaccine-induced immunity and by vaccine efficacy. 
The overall impact is roughly proportional to vaccine 
efficacy (right-hand panel). It also depends sensitively 
on the duration of vaccine protection, especially when 
this duration is shorter than around 10 yr (left-hand 
panel). For example, where immunity lasts two years 
on an average, cumulative incidence averted with a 
disease-preventing vaccine would only be about 6.8 
per cent (95% credible intervals: 2.4-17), a relative 
reduction of over 75 per cent compared to the impact 
of a vaccine offering 10 yr protection.

Figure 5 shows additional sensitivity analysis to 
vaccine programme parameters, showing a range of 
scenarios for annual coverage (X axis) as well as for the 
duration of scale-up (different colours). For example, 
three-year scale-up to annual 75 per cent coverage of 
a disease-preventing vaccine would avert 29 per cent 
(95% CrI: 25-34%) of cumulative cases by 2030. If 
this period of scale-up is extended to five years, then 
the impact would be reduced to 23 per cent (95% CrI: 
21-26%). On the other hand, if it is shortened to just 

Fig. 2. Comparison of different types of vaccine effects. Shown are the scenarios of an infection-preventing vaccine (red) and a disease-
preventing one (green). In both cases, the following assumptions were made: vaccine efficacy of 50 per cent; sufficient vaccination coverage 
to cover 50 per cent of the unvaccinated population each year and moreover that vaccine-induced immunity lasts for 10 yr on an average.



	 ARINAMINPATHY et al: IMPACT OF VACCINATION ON TB BURDEN IN INDIA	 123

one year, the impact would be increased to 34 per cent 
(95% CrI: 30-41%).

Discussion

In high-burden settings such as India, vaccination 
will be critical in bringing down TB incidence and 
mortality, to meet the End TB goals. Mathematical 
modelling offers a helpful tool for anticipating the 
potential impact of vaccination strategies. Our work 
builds on previous modelling analyses14-16, to incorporate 
updated estimates of TB burden in India, as well as to 

address the potential for targeting vulnerable population 
subgroups in the initial stages of vaccination rollout.

Notably, our results suggest that a disease-
preventing vaccine would have a stronger impact 
than an infection-preventing one, at least over the 
timescales modelled here (Fig. 2). One key reason 
for this result could be the slow natural history of TB, 
specifically with infected individuals typically taking 
a year or longer to develop active TB24. Thus, while 
an infection-preventing vaccine may take several years 

Fig. 3. Comparison of strategies for vaccine targeting. Assuming an infection-preventing vaccine, shown are scenarios where vaccination 
is targeted at those with undernutrition (red) and where it is deployed in the general population, without targeting (green). Assumptions for 
vaccine coverage, efficacy, etc., are as in Figure 2.

Fig. 4. Sensitivity analysis to vaccine characteristics. Shown are impacts arising from a range of scenarios for the duration of vaccine immunity 
(left panel) and for vaccine efficacy (right panel). In each panel, red and blue curves correspond, respectively, to infection- and disease-
preventing vaccines. The vertical dashed lines show the default values assumed in preceding figures.
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to show the effect on active TB amongst those not yet 
infected, the benefits of a disease-preventing vaccine 
are more likely to be felt in the short term, particularly 
among those already infected who would soon develop 
disease. Another notable result is the disproportionate 
impact of prioritizing vaccination in the vulnerable 
population (Fig. 3). Although this group was assumed to 
account for only 16 per cent of the general population, 
targeted vaccination achieves over 40 per cent of the 
incidence and mortality reductions that could arise 
from vaccinating the general population. Overall, these 
results highlight that if vaccine coverage needs to be 
focussed during the initial stages of rollout, it would 
have a disproportionate impact when prioritized for 
vulnerable populations bearing a high burden of TB.

Taken together, our results highlight the public 
health value of achieving the maximum possible 
vaccination coverage as rapidly as possible (Fig. 5). In 
a country as large and complex as India, achieving high 
levels of coverage will undoubtedly be a substantial 
programmatic challenge. Nonetheless, the COVID-19 
response showed that such levels of coverage could be 
reached, with almost 90 per cent of >18-yr-olds having 
received a first dose over the course of 202125. Even 
so, for a sustained TB vaccination programme in the 
future, it may be necessary to adopt ‘staged’ strategies 
for increasing vaccination coverage, including: (i) 
prioritizing adults and adolescents14, in order to 

maximize epidemiological impact, and (ii) focussing 
first on vulnerable populations such as those with 
malnutrition and other at-risk groups, and (iii) similarly 
but with a geographic scope, potentially prioritizing 
those States and districts with the highest burden of TB. 
Achieving high coverage in these priority populations 
will be an important stage in ultimately reaching 
sustained, high coverage at the country level.

As discussed above, while vaccines currently in 
the development pipeline may take years to be licensed 
and widely deployed, BCG revaccination may offer 
a valuable approach in the short term. In children, the 
efficacy of primary BCG vaccination appears to vary by 
setting, and in particular by longitude26, suggesting that 
for BCG revaccination as well, it will be important for 
any evidence to be context specific. Recent studies have 
shown promising results regarding the immunogenicity 
and efficacy of BCG revaccination among adults in 
India10,12. However, the sample size involved in a recent 
analysis12, and the limitations inherent in any retrospective 
study, mean that further evidence from prospective, 
randomized study designs in India will be invaluable. 
BCG revaccination is generally safe and can also have 
important health benefits beyond TB. For example, a 
recent systematic review highlighted a reduction in all-
cause paediatric mortality arising from BCG vaccination, 
not limited to TB27. The extent of corresponding 
protection in adolescents and adults remains unclear; 
nonetheless, these findings suggest the possibility that 
the population benefits of BCG revaccination may extend 
well beyond reducing TB burden alone.

With its focus on vaccination, our analysis does 
not address the potential for future improvements 
in other areas of the TB response. For example, 
continued expansion in engaging with India’s private 
healthcare sector is likely to contribute towards 
reduced diagnostic delays, as well as improved 
treatment outcomes28. Moreover, future expansion 
in active case-finding will contribute towards early 
identification of those with TB, potentially with 
important implications for transmission29. All of 
these measures focus on accelerating diagnosis and 
treatment: previous modelling work has highlighted 
the strong impact on incidence and mortality that could 
result when such measures are combined with mass 
vaccination1. With a substantial expansion in coverage 
of short-course TB preventive treatment (TPT) also 
anticipated in the coming months and years, an 
important question that arises is how such treatment 
would interact with preventive vaccines. Given that 

Fig. 5. Sensitivity analysis to vaccine programme characteristics. 
Shown are impacts arising from a range of scenarios for vaccine 
coverage (X axis) and for the time taken to scale-up to this coverage, 
starting from 2023 (solid, dashed and dot-dashed lines). As in 
Figure 4, red and blue curves correspond, respectively, to infection-
preventing and disease-preventing vaccines, and the vertical dashed 
line shows the default coverage assumed in Figures 1-3.
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TPT and vaccines function through pharmacological 
and immunological effects, respectively, one would 
expect their preventive effects to be complementary. 
Nonetheless, this is another context in which evidence 
from prospective trials will be useful in refining 
model-based estimates.

As with any modelling analysis, this study had some 
important limitations to note. The model necessarily 
entailed simplifications: it did not include rifampicin-
resistant TB, which accounts for about four per cent of 
TB incidence in India21. Previous modelling highlights 
the substantial reductions in drug-resistant TB that 
could be achieved through vaccination30,31. This model 
also neglected HIV/TB coinfection, which accounts for 
around two per cent of TB incidence in India21. Such 
small proportions seem unlikely to affect our estimates 
substantially: nonetheless, given the potentially 
important effects of HIV on vaccine effectiveness, an 
important area for future work would be to extend the 
present analysis to high-HIV burden settings within 
India. As discussed above, further evidence for the 
efficacy of BCG revaccination in adults and adolescents 
will be invaluable in refining our model estimates. 
Moreover, in the absence of available data, we further 
assumed that vaccine efficacy would be the same in 
those with undernutrition as compared to those with 
normal BMI: if, in practice, there is a lower efficacy 
in this group, the projected impact of vaccination 
would be correspondingly lower. Accordingly, in 
future vaccine evaluation, it will be important to assess 
efficacy not just in the general population but also in 
any population subgroups that might be considered for 
prioritization. Another important area for future work 
is to estimate the potential impact at the subnational 
level, particularly for different States, in contrast to the 
country level focus in the present study. In this work, 
we have also not addressed cost, although previous 
modelling analysis has shown that TB vaccination 
would be cost-effective14. In any future vaccination 
campaign where eligibility is restricted to those with 
latent TB, there may be additional costs associated 
with testing for latent TB infection.

Overall, given the critical role of population-level 
prevention for meeting the End TB goals, the urgency 
for an effective vaccine will not diminish, but only 
intensify, in the coming months and years. Even if 
currently available vaccines are imperfect, these may 
afford valuable and much-needed opportunities for 
TB prevention in India that can be built on as, more-
effective and improved vaccines emerge in the future.
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Governing Equations

In what follows, the subscript α denotes age group, with α = 1, 2 denoting, respectively: those aged up to 
15 years old and those 16 years and above. The subscript v denotes vaccination status, with v = 0,1,2 denoting, 
respectively: unvaccinated, those with vaccine immunity and those with waned vaccine immunity. The subscript r 
denotes the risk group, with r = 0,1 denoting, respectively: those with normal BMI and those with undernutrition.

Definitions and values of model parameters are given in Supplementary Table.

Uninfected (U):

( ) ( ) ( ) ( )1 ( ) ( )δ λ α γ−f savr
r avr avr v avr avr avr

dU
= bp a, + h L + L U + U + U

dt

where δ(α,1) takes the value 1 when α = 1 and 0 otherwise. The functions α(.), γ(.) govern ageing and uptake 
of vaccination, as defined below.

Latent infection, ‘fast’ progression (L(f)):
( )

( ) ( )( ) ( ) ( ) ( )( ) ( )λ λ α γ
f

lo hi f f favr
v avr v avr avr avr vr avr avr avr

dL
= U + c R + R + R - u + w+ h L + L + (L )

dt

Latent infection, ‘slow’ progression (L(s)):
( )

( ) ( )( ) ( )( ) ( )α γ
s

s s savr
avr vr avr avr avr

dL
= wL - y + h L + L + L

dt

Active disease, pre-care seeking (I):

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ρ ρ ρ − µ σ α γf s lo lo hi hiavr
vr avr vr avr avr avr avr TB cs avr avr avr

dI
= u L + y L + R + R + R + r + I + I + I

dt

Sought care with provider type x, awaiting diagnosis (D(x)):
( )

( ) ( ) ( ) ( )( ) ( )( )− µ σ α γ

x
x x x xavr

cs cs avr cs avr TB Dx avr avr avr

dD
= r p I + r E + + r D + D + D

dt

Diagnosed and initiated treatment with provider type x (T(x)):
( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )− τ α γ
x

x x x x x xavr
Dx Dx avr avr avr avr

dT
= r p D + d T + T + T

dt

Missed diagnosis (E):

( )( ) ( ) ( ) ( ) ( )µ σ α γ  −
 ∑ 

x xavr
Dx Dx avr TB cs avr avr avr

x

dE
= r 1 - p D + r + E + E + E

dt



Recovery after treatment completion, low relapse risk ( ( )lo
avrR ):

( )
( ) ( )( ) ( ) ( )( ) ( )( )τ ρ λ α γ−∑

lo
x lo lo lo loavr

avr avr avr avr
x

dR
= T + m + c R + R + R

dt

Recovery after treatment interruption or self-cure, high relapse risk ( ( )hi
avrR ):

( )
( ) ( )( ) ( ) ( )( ) ( )( )σ ρ λ α γ 

 
 

∑
hi

x hi hi hi hiavr
avr avr avr avr avr avr

x

dR
= I + E + D - + m + c R + R + R

dt

Long-term recovery, stabilized relapse risk (Ravr):

( ) ( )( ) ( ) ( ) ( )ρ λ α γlo hiavr
avr avr avr avr avr

dR
= m R + R - + c R + R + R

dt

Force-of-infection (λv):

( ) ( )1 1λ β δ        
∑ ∑ x

v inf avr avr avr
a,v,r x

= - VE v, I + E + D

where δ (v,1) takes the value 1 when v = 1 and 0 otherwise. Here, VEinf represents vaccine efficacy in preventing 
infection.

Similarly, the progression parameters uv,yv are dependent on vaccine status, as follows:

( )1 1 ( )δ  vr dis r 00u = - VE v, 1+ k u

( )1 1 ( )δ  vr dis r 00y = - VE v, 1+ k y

for baseline values u00, y00 in the absence of vaccination amongst people with normal BMI, as listed in 
Supplementary Table, and where kr represents the excess risk of progressing to active TB associated with 
undernutrition. Here, VEdis represents vaccine efficacy in preventing disease.

The function α (.) governs transition between the age compartments as follows, for a given state variable X:

( )
-1

α
− µ





ageing avr
avr

ageing a ,v,r avr

-r X a = 1
X =

r X X a = 2

The function γ (.) governs transition between states of vaccine immunity as follows, for a given state variable X:

( ) -1

-1

0−
γ −







vacc avr

av vacc a,v ,r waning avr

waning a,v ,r

r X v =
X = r X r X v = 1

r X v = 2



Supplementary Table. Table of model parameters
Parameter symbol Meaning Value Source

Natural history
β Annual infections per TB case 8.2 [6.4‑10] Model calibration
uvr Per‑capita rate of progression 

from latent ‘fast’ infection to 
active disease

v=0, r=0 u00=0.041 
[0.0094‑0.10]

Menzies et al1, with uncertainty 
intervals [0.1‑20]‑fold, allowing 
wide uncertainty for progression

Otherwise uvr = [1 - VEdisδ(v,1)](1+kr) u00

w Per‑capita rate of stabilization 
from latent ‘fast’ to latent 
‘slow’ status

0.87 [0.65‑1.09] Menzies et al1, with uncertainty 
intervals+/−25%

yvr Per‑capita rate of reactivation 
from latent ‘slow’ infection to 
active disease

v=0, r=0 y00=0.0036 
[0.0004–0.0064]

Menzies et al1, with uncertainty 
intervals [0.1‑20]‑fold, allowing 
wide uncertainty for reactivation

Otherwise yvr = [1 - VEdisδ(v,1)](1+kr) y00

kr Relative hazard of progression/
reactivation, undernourished 
versus normal BMI

r=0 1 Reference nutritional status
r=1 3.67 [2.23‑5.99] Calibrated to yield 3× prevalence in 

those with undernutrition, relative to 
normal BMI

h Per‑capita rate of self‑clearance 
of latent TB infection

0.028 [0.021‑0.035] Emery et al2

μTB Per‑capita rate of mortality, 
untreated TB

0.17 [0.13‑0.21] Tiemersma et al3, calculated to give 
50 per cent case fatality rate over an 
average duration of three yearsσ Per‑capita rate of self‑cure, 

untreated TB
0.17 [0.13‑0.21]

c Reduced risk of reinfection 
arising from prior exposure

0.44 [0.28‑0.66] Andrews et al (2012)4, with assumed 
uniform prior over range of [0.5‑0.9]

Health services
rcs Per‑capita rate of first 

care‑seeking, active TB
0.65 [0.47‑0.88] Model calibration

csr Following missed diagnosis, 
per‑capita rate of subsequent 
care seeking

13.5 [4.2‑50] Model calibration

rDx Per‑capita rate of offering 
diagnosis

52 Assumption, corresponding to an 
average of one week

( )
cs

On each care‑seeking attempt, 
probability of visiting provider 
type x

x=1 (public) 0.62 [0.41‑0.95] Model calibration
x=2 (private) ( ) ( )2 11−cs csp = p

( )x
Dxp Per care‑seeking visit, 

probability of diagnosis and 
initiation on treatment with 
provider type x

x=1 (public) 0.7 [0.55‑0.79] Model calibration
x=2 (private) 0.55 [0.4‑0.63]

τ Per‑capita rate of treatment 
completion

2 Corresponds to a regimen duration 
of six months

Contd...



Parameter symbol Meaning Value Source
Natural history

d(x) Per‑capita rate of treatment 
interruption

x=1 (public) 0.35 [0.26‑0.44] Calculated using d = τp/(1–p), for 
treatment completion proportion 
p, which is taken as 0.85 in the 
public sector and 0.5 in the private 
sector (assumption, with broad 
uncertainty intervals)

x=2 (private) 2 [1.5‑2.5]

ρ(lo) Per‑capita rate of relapse 
following treatment completion

0.034 [0.029‑0.039] Romanowski et al (2019)5, Menzies 
et al (2009)6 and Weis et al (1994)7, 
with uniform prior using intervals 
of±50%

ρ(hi) Per‑capita rate of relapse 
following treatment completion

0.12 [0.11‑0.16]

m Per‑capita rate of stabilizing to 
long‑term relapse risk

0.5 Most relapse occurs in the 
first two years after recovery: 
Guerra‑Assunção et al (2015)8ρ Long‑term per‑capita rate of 

relapse
0.0014 [0.0011‑0.0018]

Demographics
pr At birth, proportion in risk 

group r
0.16 [0.13‑0.20] Adjusted to yield a 16 per cent 

prevalence of undernutrition in 
the population, with 95 per cent 
uncertainty intervals 13%‑19%

rageing Per‑capita rate of moving from 
age groups 1 to 2

1/16 Age group 2 denotes those 16 years 
old and above

μ Per‑capita rate of background 
morality

0.015 [0.0028‑0.017] Model calibration

TB, tuberculosis; BMI, body mass index



Model implementation and calibration

For a given parameter set θ, we first simulated a perturbation to the disease-free equilibrium, with no vaccination, 
to find the equilibrium solution. Taking this solution as the initial condition from 2000 onwards, we simulated the 
expansion of DOTS services until 2010 as an expansion in the model parameter ppu (the proportion of care-seeking 
visits that are to the public sector). We simulated the model forwards to 2019.

We assessed model outputs against each of the calibration targets shown in Table in the main text, as follows: 
for each calibration target, we first constructed likelihood functions using beta distributions to model proportions, 
and log-likelihood distributions for all other data. We then took the overall likelihood as a product of all likelihood 
terms: in practice, we calculated the log-likelihood, thus taking a sum of the individual log-likelihood terms. For all 
priors (representing plausible ranges on model parameters), we took uniform distributions. We took the posterior 
density for the parameter θ as being proportional to the product of the likelihood and prior densities.

We sampled from the posterior density using adaptive Bayesian MCMC9. Drawing 10,000 samples 
(Supplementary Fig. 1), we discarded the burn-in and selected every 50th sample to yield 250 samples from the 
posterior density. We made all model projections (i.e. future impact of given vaccination scenarios) using these 250 
samples; we estimated uncertainty by calculating the 2.5th and 97.5th percentiles, and denoting the interval between 
these estimates as the 95% Bayesian credible intervals. We identified central estimates as the 50th percentile. Below, 
Supplementary Fig. 1 shows the trace arising from the MCMC calibration, while Supplementary Fig. 2 shows the 
resulting comparisons between model outputs and data.

Supplementary Fig. 1. Trace plot arising from MCMC calibration, showing the log-posterior density over 100,000 iterations. MCMC, Markov 
chain Monte Carlo.
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