

Long-range PCR amplification-based targeted enrichment & next generation sequencing: A cost-effective testing strategy for lysosomal storage disorders

Maria Celestina Vanaja¹, Jamal Mohammed Nurul Jain¹, Ashwin Dalal¹ & Prajnya Ranganath^{1,2}

¹Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics & ²Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India

Received June 23, 2020

Background & objectives: Lysosomal storage disorders (LSDs) are genetic metabolic disorders which result from deficiency of lysosomal enzymes or defects in other lysosomal components. Molecular genetic testing of LSDs is required for diagnostic confirmation when lysosomal enzyme assays are not available or not feasible to perform, and for the identification of the disease causing genetic variants. The aim of this study was to develop a cost-effective, readily customizable and scalable molecular genetic testing strategy for LSDs.

Methods: A testing method was designed based on the in-house creation of selective amplicons through long range PCR amplification for targeted capture and enrichment of different LSD genes of interest, followed by next generation sequencing of pooled samples.

Results: In the first phase of the study, standardization and validation of the study protocol were done using 28 samples of affected probands and/or carrier parents (group A) with previously identified variants in seven genes, and in the second phase of the study, 30 samples of enzymatically confirmed or biopsy-proven patients with LSDs and/or their carrier parents who had not undergone any prior mutation analysis (group B) were tested and the sequence variants identified in them through the study method were validated by targeted Sanger sequencing.

Interpretation & conclusions: This testing approach was found to be reliable, easily customizable and cost-effective for the molecular genetic evaluation of LSDs. The same strategy may be applicable, especially in resource poor settings, for developing cost-effective multigene panel tests for other conditions with genetic heterogeneity.

Key words Long-range polymerase chain reaction-based targeted amplification - lysosomal storage disorders - molecular genetic testing

Lysosomal storage disorders (LSDs) are a group of over 50 inborn errors of metabolism characterized by intra-lysosomal accumulation of complex macromolecules, which result from the deficiency of lysosomal enzymes or from defects in key lysosomal membrane proteins, proteins involved in lysosomal enzyme trafficking or lysosomal enzyme activator proteins^{1,2}. With a cumulative prevalence of around one in 5000 live births, they pose a sizeable health burden worldwide and are associated with significant morbidity and mortality related to neurological, visceral, cardiovascular and skeletal involvement^{1,3}.

Accurate diagnosis is essential for the proband as well as for the family, for appropriate management, prognostication, surveillance, genetic counselling prenatal/pre-implantation genetic and testing. Conventionally, LSDs have been diagnosed through lysosomal enzyme assays and these assays continue to be the gold standard diagnostic test for affected probands. However, in addition to issues inherent to biochemical diagnosis such as erroneous results due to sample degradation resulting from improper handling and lack of temperature control during transportation, enzyme assays have other limitations with respect to the diagnosis of LSDs⁴. Enzyme assays are not reliable for carrier testing as the enzyme levels in carrier individuals overlap with the normal range. Prenatal genetic testing based on enzyme assay may sometimes give equivocal results, especially in carrier fetuses or when there is maternal cell contamination⁵. Due to phenotypic variability and overlap in the clinical manifestations of different LSDs, multiple enzyme assays may be required in some cases, to establish the diagnosis, which can be time-consuming, laborious and expensive and would also require a larger volume of blood for testing². For LSDs which are not caused by deficiency of enzymes but by transporter defects [e.g. Niemann-Pick disease (NPD) type C] or activator protein deficiencies (e.g. sphingolipid activator protein deficiency), confirmation of the diagnosis requires molecular testing of the gene encoding the specific protein². A common panel providing mutation analysis for multiple LSDs in one single reaction would thus serve as a cost-effective and time saving diagnostic tool for such clinically indistinguishable LSDs, LSDs with overlapping phenotypes and LSDs not diagnosable through enzyme assays^{6,7}.

The Sanger sequencing technique is time consuming and expensive for multigene panel testing. Next generation sequencing (NGS) technologies have high throughput and make it possible to sequence multiple genes and large genomic regions by performing several millions of accurate sequence reactions in parallel. For sequencing targeted regions of the genome through NGS, target enrichment has to be done through capture kits that enable 'capture' of the desired genomic regions^{8,9}. The commercially available target enrichment kits which work chiefly on the principle of solution-based capture or array-based capture are expensive and increase the cost of the test and they are not easily customizable and scalable for small groups of genes, for example, a group of genes associated with a specific phenotype such as dysostosis multiplex-associated LSDs.

The objective of this study was to design and validate a strategy of long range PCR (LR-PCR) based targeted enrichment, followed by NGS, for molecular genetic testing of LSDs and to evaluate the cost-effectiveness, scalability and customizability of this technique.

Material & Methods

The study was conducted over three years from November 2014 to November 2017 at the Diagnostics Division of the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad after approval of the Institutional Ethics Committee. Individuals across all age groups who were diagnosed to have an LSD based on the clinical features and imaging findings and in whom the specific diagnosis was confirmed by either enzyme assay and/or molecular genetic testing and/or their unaffected carrier parents, were included in the study, after obtaining a written informed consent.

Peripheral blood samples were collected for all individuals recruited into the study and DNA was extracted from the blood samples as described below. The study samples were classified into group A and group B. Group A consisted of affected individuals and/or parents who had already undergone molecular genetic testing (with or without enzymatic confirmation) through Sanger sequencing, and in whom, the disease causing gene variants were already identified. The DNA samples of this group were used for the first phase of the study, which involved standardization and validation of the study technique. Group B consisted of patients who had an enzymatically confirmed or biopsy-proven diagnosis of a specific LSD and/or their unaffected carrier parents, in whom molecular genetic testing had not been done already. The DNA samples of this group were used in the second phase of the study. The samples of probands, as well as carrier parents, were collected, to validate the utility of the method for detection of homozygous as well as heterozygous variants.

Sample collection and DNA extraction: Three millilitres of peripheral blood was collected in an EDTA vacutainer tube, from each study participant. Genomic DNA was extracted from each blood sample

using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) and the DNA was quantified using the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Massachusetts, USA).

Long range PCR (LR-PCR): The primers for LR-PCR were designed using the Primer3 software version 4.0.0 (http://bioinfo.ut.ee/primer3) for the lysosomal storage disorder-associated genes, as listed in Table I. A total of 22 genes were included (NEU1, ARSA, SMPD1, IDUA, NPC1, NPC2, GNPTAB, GNPTG, GAA, GALNS, GLB1, MCOLN1, GBA, NAGLU, SGSH, IDS, HEXA, HEXB, GLA, GALC, ASAH1 and GUSB). Each set of LR-PCR primers was designed to amplify around 5-10 kb fragments. For genes smaller than 10 to 15 kb in size (including the complete exonic and intronic regions), the entire gene could be covered within a single LR-PCR fragment, whereas for genes larger than 15 kb in size, from two to up to nine sets of LR-PCR primers had to be designed to cover the entire gene, depending on the size of the gene, as mentioned in the Supplementary Table. The LR-PCR primer sets were designed to completely cover the exonic regions, along with the flanking intronic sequences (up to at least 500 bases on both sides of each exon), and at least 500 bases upstream to the 5' end and 500 bases downstream to the 3' end of each of the 22 genes. In addition, all the introns that got included as intervening sequences, within the proximal and distal exonic extent of each LR-PCR fragment, were also completely covered, as detailed in Supplementary Table. LR-PCR primers were not designed for exons 1 and 2 of GNPTAB, exon 1 of HEXA, exon 1 of HEXB, exon 1 of NPC2 and exon 1 of ASAH1, as these exons were small and could be covered through short PCR and Sanger sequencing, and their flanking intronic sequences were too large to enable them to be clubbed together with the next exon within one LR-PCR fragment. LR-PCR was standardized and performed using PrimeSTAR GXL DNA polymerase (Takara Bio Inc., Shiga, Japan). Agarose gel electrophoresis with ethidium bromide staining of the LR-PCR products was performed to demonstrate specific fragments ranging in size from 5-10 kb for the different LSD-associated genes included in the study.

Preparation of libraries and sequencing: PCR products of study participants were quantified on Qubit 3.0 fluorometer (Thermo Fisher Scientific, Massachusetts, USA) and pooled together at equimolar amounts. The samples were pooled to make a total volume of 100 µl with a final concentration of 1000 ng/100 µl (*i.e.* 10 ng/µl).

The study was performed in two phases. In the first phase, for standardization and validation of the study technique, DNA samples of the affected individuals and/or their parents with already identified gene variants (group A) were included, as listed in Table I. Four libraries were constructed in all to accommodate the 28 group A samples; each library consisted of 29 LR-PCR fragments of seven LSD genes, each fragment ranging from 5-10 kb in size. The analysis was performed in a blinded manner and the person analyzing the NGS data was not aware of the variants previously identified by Sanger sequencing, to eliminate any element of bias in the analysis.

In the second phase, samples of patients with enzymatically confirmed or biopsy proven diagnosis of specific LSDs and/or their parents, who had not already undergone mutation analysis (group B), were included, as shown in Table II. Five libraries were constructed to accommodate the 30 patient samples; each library consisted of LR-PCR fragments of 5 - 7 LSD genes, each ranging from 5 - 10 kb in size (24 fragments in libraries Lib_1 and Lib_3, 25 fragments in libraries Lib_2 and Lib_4 and 28 fragments in library Lib_5).

One sample for each gene was included in one library, as listed in Tables I and II. Equimolar long PCR amplicons corresponding to different genes of different patients (*e.g. IDUA* amplicons of one patient, *ARSA* amplicons of another patient and *HEXA* amplicons of a third patient) were combined and the pooled samples were subjected to sequence analysis using the Illumina MiSeq platform (Illumina Inc., San Diego, California, USA). Reads with 100X coverage for every amplicon were generated to ensure the accuracy of the results.

Data analysis: The Illumina sequencing reads in FASTQ format were checked for quality using the FastQC application (*http://www.bioinformatics.babraham. ac.uk/projects/fastqc*). Libraries for which data quality was found to be satisfactory were processed further for analysis. Paired-end reads were aligned, using the Burrows-Wheeler Aligner (BWA) version 0.5.9rc1, to the human genome assembly hg19¹⁰. Genome Analysis Toolkit (GATK) software package version 1.6 (Broad Institute, Cambridge, MA, USA)¹¹ was used for variant calling¹² and ANNOVAR software version 2012 was used for annotation of the variants¹³.

gene variants, included in the study Affected Library Name of	luded in the study Library Name of	e study Name of		LR-PCR	Sequence variant	Sequence variant	Zygosity	Position of	Known/	Variant
status number the gene fragment in prev which variant (s) ident identified Sang (DN,	number the gene fragment in prev which variant (s) ident identified Sang (DN,	the gene fragment in prev which variant (s) iden identified Sang (DN)	fragment in prev which variant (s) ident identified Sang (DN)	prev iden Sang (DN	iously tifted through er sequencing A notation)	previously identified through Sanger sequencing (protein notation)		the variant	Novel Variant	classification
Affected Lib_1 NEUI NEUI-1 (Exons c.679	Lib_1 NEUI NEUI-1 (Exons c.679	NEUI NEUI-1 (Exons c.679	NEUI-1 (Exons c.679	c.679	G>A/	p.Gly227Arg/	CH	Exonic/	Known	LP/LP
proband 1 to 6) c.200c	1 to 6) c.200c	1 to 6) c.200c	1 to 6) c.200c	c.200d	lelG	p.Ser67ThrfsTer71		Exonic	(reported in HGMD and ClinVar)/ Novel	
AffectedLib_1IDUAIDUA-2 (Exons c.7671proband3 to 14)	Lib_1 <i>IDUA IDUA</i> -2 (Exons c.767T 3 to 14)	<i>IDUA IDUA</i> -2 (Exons c.767T 3 to 14)	<i>IDUA</i> -2 (Exons c.767T 3 to 14)	c.767T	Ð	p.Leu256Arg	Hom	Exonic	Novel	LP
Affected Lib_1 ARSA ARSA-1 (Exons c.327+ proband 1 to 8) c.338T	Lib_1 ARSA ARSA-1 (Exons c.327+ 1 to 8) c.338T	<i>ARSA ARSA</i> -1 (Exons c.327+ 1 to 8) c.338T	ARSA-1 (Exons c.327+ 1 to 8) c.338T	c.327+ c.338T	1C>T/ >C	NA/p.Leu113Pro	CH	Splice site/ Exonic	Novel/ Novel	LP/VOUS
Affected Lib_1 GAA GAA-3 (Exons c.2783. proband 16 to 20) 17 to 20)	Lib_1 GAA GAA-3 (Exons c.2783) 16 to 20)	<i>GAA GAA</i> -3 (Exons c.2783, 16 to 20)	<i>GAA</i> -3 (Exons c.2783, 16 to 20)	c.2783,	A>G	p.Tyr928Cys	Hom	Exonic	Novel	NOUS
Affected Lib_1 GNPTAB GNPTAB-3 c.1144A proband (Exons 8 to 11)	Lib_1 GNPTAB GNPTAB-3 c.1144A (Exons 8 to 11)	GNPTAB GNPTAB-3 c.1144A (Exons 8 to 11)	<i>GNPTAB</i> -3 c.1144A (Exons 8 to 11)	c.1144A	Q A	p.Tyr382Pro	Hom	Exonic	Known (reported in ClinVar)	LP
Unaffected Lib_1 NPCI NPCI-8 (Exons c.2738d carrier parent 15 to 20)	Lib_1 <i>NPCI NPCI</i> -8 (Exons c.2738d 15 to 20)	<i>NPCI NPCI</i> -8 (Exons c.2738d 15 to 20)	<i>NPC1</i> -8 (Exons c.2738d 15 to 20)	c.2738d	elG	p.Gly913Ala fsTer23	Het	Exonic	Novel	LP
Affected Lib_1 <i>GLB1</i> GLB-1 c.75+2d proband (Exon-1)	Lib_{-1} <i>GLB1</i> GLB-1 c.75+2d (Exon-1)	GLBI GLB-1 c.75+2d (Exon-1)	GLB-1 c.75+2d (Exon-1)	c.75+2d	InpT	NA	Hom	Splice site	Known (reported in ClinVar)	LP
AffectedLib_2NEUINEUI-1(Exons c.880C>proband1 to 6)c.194G>	Lib_2 <i>NEUI NEUI-</i> 1 (Exons c.880C> 1 to 6) c.194G>	<i>NEUI NEUI-</i> 1 (Exons c.880C> 1 to 6) c.194G>	<i>NEUI-</i> 1 (Exons c.880C> 1 to 6) c.194G>	c.880C> c.194G>	/T. Y.	p.Arg294Cys/p. Trp65Ter	СН	Exonic/ Exonic	Known (reported in HGMD)/ Novel	LP/P
AffectedLib_2IDUAIDUA-1(Exons c.779C)proband1 to 2)	Lib_2 <i>IDUA IDUA</i> -1 (Exons c.779C> 1 to 2)	<i>IDUA IDUA</i> -1 (Exons c.779C) 1 to 2)	<i>IDUA</i> -1 (Exons c.779C> 1 to 2)	c.779C>	F,	p.Ser260Phe	Hom	Exonic	Novel	VOUS
Affected Lib_2 ARSA ARSA-1 (Exons c.901C: proband 1 to 8) 417C>1	Lib_2 ARSA ARSA-1 (Exons c.901C ⁻ 1 to 8) 417C>1	ARSA ARSA-1 (Exons c.901C ⁻ 1 to 8) 417C>1	<i>ARSA-</i> 1 (Exons c.901C ⁻ 1 to 8) 417C>1	c.901C> 417C>1	>T/c.	p.Arg301Trp/p. Pro139Pro	СН	Exonic/ Exonic (splice site change)	Known (reported in HGMD)/ Novel	LP/LB
										Contd

INDIAN J MED RES, JUNE 2023

Variant classification	NOUS	Ρ	VOUS	NOUS	LP	ď	LP	NOUS	LP	LP	۵.	VOUS	Contd
Known/ Novel Variant	Novel	Novel	Novel	Novel	Known (reported in HGMD and ClinVar)	Known (reported in ClinVar)	Known (reported in ClinVar)	Novel	Known (reported in ClinVar)	Novel	Known (reported in ClinVar and HGMD)	Novel	
Position of the variant	Exonic	Exonic	Exonic	Exonic	Exonic	Splice site	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	
Zygosity	Het	Hom	Het	Het	Hom	Hom	Hom	Het	Hom	Het	Hom	Hom	
Sequence variant previously identified through Sanger sequencing (protein notation)	p.Tyr928Cys	p.Asn148ThrfsTer4	p.Ile690Phe	p.Gly23Ala	p.Gly227Arg	NA	p.Arg246His	p.Tyr928Cys	p.Val1911le	p.Gly913Ala fsTer23	p.Arg482His	p.Tyr296Cys	
Sequence variant previously identified through Sanger sequencing (DNA notation)	c.2783A>G	c.440deIC	c.2068A>T	c.68G>C	c.679G>A	c.972+1G>A	c.737G>A	c.2783A>G	c.571G>A	c.2378delA	c.1445G>A	c.887A>G	
LR-PCR fragment in which variant (s) identified	<i>GAA</i> -3 (Exons 16 to 20)	<i>GNPTAB-</i> 3 (Exons 3 to 5)	<i>NPCI-7</i> (Exons 12 to 14)	GLB-1 (Exon-1)	<i>NEUI-</i> 1 (Exons 1 to 6)	<i>IDUA-</i> 2 (Exons 3 to 14)	ARSA-1 (Exons 1 to 8)	<i>GAA</i> -3 (Exons 16 to 20)	<i>GNPTAB-3</i> (Exons 3 to 5)	<i>NPCI</i> -8 (Exons 15 to 20)	<i>GLB1-</i> 6 (Exons 13 to 15)	NEUI-1 (Exons 1 to 6)	
Name of the gene	GAA	GNPTAB	NPCI	GLBI	NEUI	IDUA	ARSA	GAA	<i>GNPTAB</i>	NPCI	GLBI	NEUI	
Library number	Lib_2	Lib_2	Lib_2	Lib_2	Lib_3	Lib_3	Lib_3	$Lib_{-}3$	Lib_3	$Lib_{-}3$	Lib_3	$Lib_{-}4$	
Affected status	Unaffected carrier parent	Affected proband	Unaffected carrier parent	Unaffected carrier parent	Affected proband	Affected proband	Affected proband	Unaffected carrier parent	Affected proband	Unaffected carrier parent	Affected proband	Affected proband	
Sample ID	A_011	A_012	A_013	A_014	A_015	A_016	A_017	A_018	A_019	A_020	A_021	A_022	

Sample ID	Affected status	Library number	Name of the gene	LR-PCR fragment in which variant (s)	Sequence variant previously identified through	Sequence variant previously identified through	Zygosity	Position of the variant	Known/ Novel Variant	Variant classification
				identified	Sanger sequencing (DNA notation)	Sanger sequencing (protein notation)				
A_023	Affected	Lib_4	IDUA	IDUA-2 (Exons	c.895G>T	p.Glu299Ter	Hom	Exonic	Novel	Ρ
	proband			3 to 14)						
A_024	Unaffected	$Lib_{-}4$	SMPD1	SMPD1-1	c.1492C>T	p.Arg498Cys	Het	Exonic	Known	LP
	carrier parent			(Exons 1 to 6)					(reported in	
									ClinVar)	
A_025	Affected	Lib_4	GAA	GAA-1 (Exons	c.189delA/c.	p.Arg66Gly	CH	Exonic/	Novel/	P/P
	proband			1 to 2)	2122delC	fsTer76/p.		Exonic	Novel	
				GAA-3 (Exons		His708Thr				
				15 to19)		fsTer56				
A_026	Unaffected	Lib_4	GNPTAB	GNPTAB-3	c.440delC	p.Asn148ThrfsTer4	Het	Exonic	Novel	LP
	carrier parent			(Exons 3 to 5)						
A_027	Unaffected	Lib_4	NPCI	NPC1-8 (Exons	c.2604+1G>A	NA	Het	Splice site	Known	Ρ
	carrier parent			15 to 20)					(reported in	
									ClinVar)	
A_028	Affected	Lib_4	GLBI	GLB1-2 (Exons	c.522T>G/c.	p.Tyr174Ter/p.	CH	Exonic/	Novel/	P/P
	proband			2 to 5)	1242delG	Phe415Leu		Exonic	Novel	
				GLB1-6 (Exons		fsTer46				
				13 to15)						
Hom, ho HGMD, 1	mozygous; Het, l human gene muta	neterozygo tion databa	us; CH, com tse; PCR, poly	pound heterozygous ymerase chain reacti	:; P, pathogenic; LP, l ion; LR-PCR, long-rar	ikely pathogenic; VOU 1ge PCR	JS, variant o	f uncertain sig	nificance; LB,	likely benign;

the study	Whether confirmed by Sanger sequencing	Yes		Yes		Yes			Yes			Yes			Yes			Yes		Yes			Yes			Yes		•
ents, included in	Variant classification	LP		VOUS		LP			Р			LP			NOUS			Р		LP			Ρ			Ь		
und/or their pare	Known/ Novel	Reported	in ClinVar and HGMD	Reported in	HGMD	Reported in	ClinVar		Novel			Novel			Novel			Reported in	ClinVar	Novel			Novel			Reported in HGMD		
disorders a	Position of the variant	Exonic		Exonic		Exonic			Exonic			Exonic			Exonic			Splice	site	Splice	site		Exonic			Exonic		
omal storage	Zygosity	Hom		Hom		Hom			Het			Het			Het			Hom		Hom			Het			Het		
osy-proven lysos	Sequence variant identified in the study (protein notation)	p.Leu483Pro		p.Glu450Gly		p.Glu114Lys			p.Tyr174Ter			p.Asn793Ile	fsTer3		p.Ser164Arg			NA		NA			p.Phe415Leu	fsTer46		p.Arg934Ter		
atically confirmed or biol	Sequence variant identified in the study (DNA notation)	c.1448T>C		c.1349A>G		c.340G>A			c.522T>G			c.2378_2378delA			c.492C>G			c.120+1G>C		c.571-2A>G			c.1242delG			c.2800C>T		
nts with enzyma	LR-PCR fragment in which variant (s) identified	GBA-1	(Exons 1 to 11)	GALNS-5	(Exons 12	HEXA-2	(Exons 2	to 7)	GLB1-2	(Exons 2	to 5)	NPC1-8	(Exons 15	to 20)	GBA-1	(Exons 1 to	11)	GALNS-1	(Exon 1)	HEXA-2	(Exons 2	to 7)	GLB1-6	(Exons 13	to15)	<i>NPCI-8</i> (Exons 15	to 20)	
ples of patie	Name of the gene	GBA		GALNS		HEXA			GLBI			NPCI			GBA			GALNS		HEXA			GLBI			NPCI		
oup B sam	Library number	Lib_1		Lib_1		Lib_1			Lib_{-1}			Lib_1			Lib_2			Lib_2		Lib_2			Lib_2			Lib_2		
E II. List of Gr	Affected status	Affected	proband	Affected	proband	Affected	proband		Unaffected	carrier	parent	Unaffected	carrier	parent	Unaffected	carrier	parent	Affected	proband	Affected	proband		Unaffected	carrier	parent	Unaffected carrier	parent	
Table	Sample ID	\mathbf{B}_{-001}		B_002		${ m B}_{-}003$			B_004			B_005			B_0006			B_007		${ m B008}$			B_0009			B_010		

Whether confirmed by Sanger sequencing	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Contd
Variant classification	NOUS	SUOV	NOUS	SUOV	SUOV	LP	Ч	Ч	4	Ч	LP	
Known/ Novel	Novel	Novel	Novel	Novel	Novel	Reported in ClinVar and HGMD	Reported in ClinVar and HGMD	Novel	Reported in HGMD	Reported in HGMD	Reported in HGMD	
Position of the variant	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	Exonic	
Zygosity	Hom	Hom	Hom	Hom	Hom	Hom	Hom	Hom	Hom	Het	Hom	
Sequence variant identified in the study (protein notation)	p.Arg203Pro	p.Asp180Asn	p.Asn32Thr	p.Pro475Arg	p.Thr600Ile	p.Leu684Phe	p.Arg502Cys	p.Glu126Ter	p.Leu1168Gln fsTer5	p.Arg934Ter	p. 618_619del	
Sequence variant identified in the study (DNA notation)	c.608G>C	c.538G>A	c.95A>C	c.1424C>G	c.1799C>T	c.2050C>T	c.1504C>T	c.376G>T	c.3503_3504delTC	c.2800C>T	c.1853_1855delACC	
LR-PCR fragment in which variant (s) identified	NAGLU-1 (Exons 1to 6)	<i>GBA-</i> 1 (Exons 1 to 11)	GALNS-1 (Exon 1)	<i>HEXA-3</i> (Exons 8 to14)	<i>GLB1-7</i> (Exon-16)	<i>NPC1-7</i> (Exons 12 to 14)	<i>GBA-</i> 1 (Exons 1 to 11)	GALNS-2 (Exon 2 to 4)	GNPTAB-8 (Exons 19 to 21)	<i>NPC1-8</i> (Exons 15 to 20)	<i>IDUA-2</i> (Exon 3 to 14)	
Name of the gene	NAGLU	GBA	GALNS	HEXA	GLBI	NPCI	GBA	GALNS	GNPTAB	NPCI	IDUA	
Library number	Lib_2	Lib_3	Lib_3	Lib_3	Lib_3	Lib_3	Lib_4	Lib_4	Lib_4	Lib_4	Lib_4	
Affected status	Affected proband	Affected proband	Affected proband	Affected proband	Affected proband	Affected proband	Affected proband	Affected proband	Affected proband	Unaffected carrier parent	Affected proband	
Sample ID	B_011	B_012	$B_{-}013$	B_014	B_015	B_016	B_017	B_018	B_019	B_020	B_021	

INDIAN J MED RES, JUNE 2023

Whether confirmed by Sanger sequencing	Yes	Yes	Yes	Yes	NA	Yes	Yes	Yes	Yes	benign;
Variant classification	LP	VOUS/LP	d	SUOV	NA	LB	LP	NOUS	LP	ance; LB, likely
Known/ Novel	Novel	Novel/ Reported in ClinVar and HGMD	Novel	Novel	NA	Reported in ClinVar	Novel	Novel	Reported in ClinVar and HGMD	ncertain signific.
Position of the variant	Splice site	Exonic/ Exonic	Splice site	Exonic	NA	Exonic	Splice site	Exonic	Exonic	ariant of ur able
Zygosity	Hom	CH	Het	Hom	NA	Het	Het	Hom	Hom	c; VOUS, v v. not avaial
Sequence variant identified in the study (protein notation)	NA	p.Ser164Arg/ p.Gly85Glu	NA	p.Ile291Thr	NA	p.Gly576Ser	NA	p.Thr600lle	p.Leu490Pro	, likely pathogeni g-range PCR. NA
Sequence variant identified in the study (DNA notation)	c.111+1G>C	c.492C>G/c. 254G>A	c.1483-1G>C	c.872T>C	No significant variant identified	c.1726G>A	c.1410+1 C>A	c.1799C>T	c.1469T>C	zygous; P, pathogenic; LF in reaction: LR-PCR. lon
LR-PCR fragment in which variant (s) identified	<i>GNPTG-</i> 1 (Exon 1to 3)	<i>GBA-</i> 1 (Exons 1 to 11)	<i>GALNS-5</i> (Exon 12 to 14)	NEU1-1 (Exons 1 to 6)	NA	<i>GAA-3</i> (Exons 3 to 14)	<i>GNPTAB-3</i> (Exons 3 to 5)	<i>GLB1-7</i> (Exon-16)	<i>IDUA-2</i> (Exon 3 to 14)	mpound heteroz polvmerase cha
Name of the gene	GNPTG	GBA	GALNS	NEUI	SQI	GAA	<i>GNPTAB</i>	GLB1	IDUA	sous; CH, cor abase: PCR.
Library number	Lib_4	Lib_5	Lib_5	Lib_5	Lib_5	Lib_5	Lib_5	Lib_5	Lib_5	t, heterozyg utation data
Affected status	Affected proband	Affected proband	Unaffected carrier parent	Affected proband	Affected proband	Unaffected carrier parent	Unaffected carrier parent	Affected proband	Affected proband	nozygous; He numan gene m
Sample ID	B_022	B_023	B_024	B_025	B_026	B_027	B_028	B_029	B_030	Hom, hon HGMD, h

All the identified variants were filtered using the following criteria for each patient: (i) genetic filter filtration of variants based on presence in known, mutation or polymorphism databases; (ii) evolutionary filter - filtration of variants based on evolutionary conservation in vertebrates; and (iii) functional filter: filtration of variants based on amino acid change, expression in the target tissue, computational prediction of deleterious effect, etc. The population databases 1000 Genome (https://www.internationalgenome.org/1000genomes-browsers/) and gnomAD (https://gnomad. *broadinstitute.org/*) were used to filter out polymorphic variants with a high minor allele frequency. Previously reported known pathogenic variants were identified using the ClinVar (https://www.ncbi.nlm.nih.gov/ *clinvar/*) and HGMD (Human Gene Mutation Database; *http://www.hgmd.cf.ac.uk/ac/index.php*) databases and by searching published literature on PubMed. Classification of the identified variants was done as per the guidelines outlined by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP variant classification guidelines 2015)14. In silico prediction of the effect of the variants was done using mutation prediction tools such as PolyPhen-2 (http://genetics. *bwh.harvard.edu/pph2/*), SIFT (*https://sift.bii.a-star*. edu.sg/), MutationTaster2 (http://www.mutationtaster. org/) and CADD (https://cadd.gs.washington.edu/). The impact of the variants on splicing was checked with the help of the MutationTaster2 and Human Splicing Finder (http://www.umd.be/HSF/) software.

Sanger sequencing: The sequence variants identified through this study in the group B samples were validated by Sanger sequencing which was done on ABI 3130 Genetic Analyzer (Thermo Fisher Scientific, Massachusetts, USA) following the manufacturer's protocol.

An overview of the workflow is shown in Figure 1.

Initial standardization and validation of the study protocol were done using 28 samples of affected probands and/or carrier parents (group A) with known variants in seven genes, in the first phase of this study. Later, in the second phase, 30 samples of enzymatically confirmed or biopsy-proven patients with LSDs and/or their carrier parents who had not undergone any prior mutation analysis (group B) were included and the sequence variants identified in them through NGS were validated by targeted Sanger sequencing.

Results

Initially, for evaluating and validating the NGS workflow, 28 samples with previously identified variants (group A samples) were included in four libraries, as shown in Table I, and we found 100 per cent concordance in the sequence variants previously identified by Sanger sequencing and then by NGS in this study, ensuring that the analysis was done in a blinded manner to eliminate bias. Heterozygous variants in carrier parents, as well as biallelic variants (compound heterozygous or homozygous variants) in the probands, were identified with the NGS based study technique, as shown in Table I. Of the total 34 variants identified in the group A samples, 18 were missense variants, three were nonsense variants, eight were small indels and four were splice site variants; one variant identified in the ARSA gene (c.417C>T) is a synonymous variant and classified as 'likely benign' but was predicted to cause splice site changes and therefore to be disease-causing by MutationTaster2 (http://www.mutationtaster.org/).

In the second phase of the study, 30 samples of probands and/or their carrier parents were included. These DNA samples were collected from clinically diagnosed cases of different LSDs, where the diagnosis was confirmed by enzymatic analysis for all except those with NPC1 gene associated NPD type C (group B samples). There is no lysosomal enzyme assay available for NPD type C, as the NPC1 gene product is not an enzyme but a protein involved in intracellular cholesterol trafficking; therefore, these cases were chosen based on the clinical features of neonatal cholestasis with liver biopsy findings suggestive of NPD in the proband. Heterozygous as well as homozygous disease-causing variants were identified through the NGS workflow, as listed in Table II, and all these identified variants were validated by targeted Sanger sequencing. Figure 2 shows four representative examples of the variants identified through NGS and thereafter validated through Sanger sequencing. Of the total 30 variants identified in the group B samples, 17 were missense variants, four were nonsense variants, four were small indels and five were splice site variants. No significant variants were identified in the IDS gene (in any of the three LR-PCR fragments covering the IDS gene) in the sample of one patient clinically diagnosed and enzymatically confirmed to have mucopolysaccharidosis (MPS) type II (Hunter syndrome); Sanger sequencing of the exons and flanking intron-exon junctions

Fig. 2. Representative examples of the variants identified through the study protocol in four different samples and thereafter validated through targeted Sanger sequencing.

Table III. Criteria to be considered for selection of lysosomal storage disorder patients and for designing of libraries for LR-PCR amplification, followed by next-generation sequencing

- Twenty five to 30 LR-PCR fragments, each of 5-10 kb size, can be included per library
- · There should not be any sequence homology between the fragments
- · LR-PCR fragments corresponding to different genes for one or more patients can be pooled together in one library
- Testing one or a few genes (up to 5) for a patient, makes the strategy most cost-effective; therefore, it is better to narrow down the diagnostic possibilities through prior clinical evaluation and laboratory testing
- Ideal for conditions where a specific gene has to be tested based on clinical and biochemical phenotype (*e.g. ARSA* for metachromatic leukodystrophy) or where a few genes (>1 but <5) have to be tested based on the clinical phenotype (*e.g.* MPS III or MPS IV)
- Ideal for genes such as *GUSB* (for MPS VII) and *GBA* (for Gaucher disease), which have pseudogenes, as LR-PCR primers can be suitably designed to selectively amplify the gene and exclude the pseudogene

MPS, mucopolysaccharidosis; LR-PCR, long range-PCR

of the *IDS* gene also did not reveal any significant variants. Further multiplex ligation-dependent probe amplification of the gene is planned for this patient to look for large exonic deletions/duplications and complex rearrangements, which are known to occur in around 20 per cent of patients with MPS II, due to recombination of the *IDS* gene with *IDSP1* pseudogene. It is possible to detect large exonic deletions and duplications by analysis of NGS data using software which compare the read-depth of the test data with the matched aggregate reference dataset, but complex rearrangements may get missed by sequencing-based testing techniques.

Discussion

The diagnostic journey for many patients with lysosomal storage disorders is often time-consuming, tedious and expensive, involving multiple enzyme assays and sometimes even invasive tests such as bone marrow and/or liver biopsy¹⁵. The availability of a multigene panel test for LSDs can make the diagnosis faster and cheaper and this has become possible with the availability of high throughput NGS technologies in recent years^{6,7,16}.

Most of the commercially available kits for targeted 'capture' of genes for multigene panel tests are based on one of the following approaches: (*i*) hybridization-based strategies, (*ii*) transposon-mediated fragmentation (tagmentation), (*iii*) molecular inversion probes, and (*iv*) PCR based target enrichment⁹. However, these commercial capture kits are expensive, available in fixed quantities and are therefore not easily scalable, or readily customizable.

In this study, we have applied and validated a strategy based on the in-house development of selective amplicons through LR-PCR amplification for targeted capture of different LSD genes of interest, followed by NGS of pooled samples. The two most important advantages of using this method of amplicon libraries were the significant reduction in the costs and the ability to easily customize the genes of interest when compared to commercially available targeted enrichment kits. As has been shown in the study, this technique can be used for molecular genetic testing of already enzymatically confirmed cases, where molecular genetic testing can be done directly for the concerned gene only and it can also be used for targeted sequencing of already identified variants in family members. In addition, small panels can be custom designed based on the clinical phenotype of the patient for genes associated with overlapping phenotypes, e.g. MPS associated genes; the molecular diagnosis can be then validated by performing the concerned enzyme assay. The groups of genes included in each library can be flexible. Any combination of genes can be included in one library, as long as one ensures that there is no sequence homology between the different genes. Similarly, different patients' samples can be included in one library, provided these are for different genes. Apart from these advantages, there are some additional benefits of this method. This technique has the ability to include complete intronic regions of genes provided the introns are not too large in size, as opposed to the commercially available kits that chiefly include the coding regions (exons) and the flanking intron-exon junctions only; thus, it helps to detect deep intronic variants also. Through appropriate designing of LR-PCR primers, one can also ensure that the gene is selectively amplified and pseudogene sequences, if any, are excluded. Table III lists the criteria that

may be considered when selecting patients, clinically diagnosed to have various LSDs, for testing through this proposed method, and for preparing libraries of pooled samples.

A similar approach was used by other researchers for designing multigene panels for groups of disorders such as Mendelian retinal disorders and hereditary breast cancer¹⁷⁻²⁰. Their results also demonstrated that LR-PCR amplification, followed by NGS was an effective method for mutation analysis of monogenic heterogeneous diseases.

Analysis of the cost-effectiveness of this in-house LR-PCR amplification based targeted enrichment, followed by NGS based assay versus Sanger sequencing for individual genes as well as NGS based multigene panel sequencing following capture with commercially available kits revealed that this method was much more economical, especially for single genes which are within 10-50 kb in size and groups of small genes (especially less than 5). In this study, the approximate cost of sequencing for each LR-PCR fragment worked out to around 1000 Indian rupees [approximately 15 US dollars (\$)]. Therefore, for a gene that can be covered with 1-5 LR-PCR fragments, the cost of sequencing by the study method would be only around 1000-5000 INR (₹) (around 15-75 US \$). Thus, this testing strategy will be far more cost-effective than larger commercial panels such as clinical-exome sequencing (CES) and whole-exome sequencing (WES), if one has to look for variants in a single specific gene or a small number of genes based on the clinical suspicion. For example, if the clinical diagnosis is mucopolysaccharidosis type III (MPS III), one can do sequencing only for SGSH (for MPS IIIA) and NAGLU (for MPS IIIB), as MPS IIIA and IIIB together account for around 90 per cent of MPS III. The cost for SGSH and NAGLU mutation analysis, with the proposed LR-PCR amplification, followed by the NGS method, would come to only around ₹ 3000 (approximately 40 US \$), which is significantly less than the cost of CES and WES.

Despite its cost-effectiveness, robustness and easy customizability, an assay based on this model has some limitations. One is the requirement to pool samples and do the testing in batches, to maintain cost-effectiveness, which makes the method unsuitable when a sample has to be tested within a short and limited time frame, for instance, for a prenatal sample, where the report has to be issued as early as possible. The other important drawback of this strategy is that it is not suitable for panel testing of larger numbers of genes, as doing LR-PCR for multiple gene fragments would be tedious and time consuming. Furthermore, when designing libraries, one has to ensure that more than one patient's sample for the same gene is not included and there is no sequence homology between the different genes included in one library.

This study has demonstrated the utility of the technique of LR-PCR amplification, followed by NGS in the molecular diagnosis of individuals with lysosomal storage disorders. In particular, the cost-effectiveness of this method has been demonstrated in the Indian context. The relatively low sample size and the inclusion of only 22 LSD associated genes are some of the limitations of this study.

Overall, LR PCR-based targeted gene enrichment combined with NGS appears to be a reliable, clinically practical, easily customizable, scalable and costeffective approach for mutation analysis of lysosomal storage disorders and can be used even in resource-poor settings. We plan to apply the same strategy to develop molecular genetic assays for other groups of disorders with overlapping phenotypes such as organic acidurias, other inborn errors of metabolism, coagulopathies, pathway disorders, *etc.* especially where functional assays are available to identify the gene to be sequenced or to validate the molecular study results.

Financial support & sponsorship: The molecular genetic tests in this study were performed with the help of funding support obtained under Department of Health Research, Indian Council of Medical Research, New Delhi (GIA/62/2014-DHR).

Conflicts of Interest: None.

References

- Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kindler KW, et al., editors. Lysosomal disorders. In: The metabolic and molecular bases of inherited disease, 8th ed. New York: McGraw-Hill; 2001. p. 3371-877.
- Filocamo M, Morrone A. Lysosomal storage disorders: Molecular basis and laboratory testing. *Hum Genomics* 2011; 5: 156-69.
- Fuller M, Meikle PJ, Hopwood JJ. Epidemiology of lysosomal storage diseases: An overview. In: Mehta A, Beck M, Sunder-Plassmann G, editors. *Fabry disease: Perspectives from 5 years of FOS*, Ch. 2. Oxford: Oxford PharmaGenesis; 2006.
- Strovel ET, Cusmano-Ozog K, Wood T, Yu C, ACMG Laboratory Quality Assurance Committee. Measurement of lysosomal enzyme activities: A technical standard of the American College of Medical Genetics and Genomics (ACMG). *Genet Med* 2022; 24: 769-83.

- 5. Prajnya R, Rehder C, Phadke SR, Bali D. Prenatal diagnosis of Pompe disease: Enzyme assay or molecular testing? *Indian Pediatr* 2011; *48* : 901-2.
- 6. Zanetti A, D'Avanzo F, Bertoldi L, Zampieri G, Feltrin E, De Pascale F, *et al.* Setup and validation of a targeted nextgeneration sequencing approach for the diagnosis of lysosomal storage disorders. *J Mol Diagn* 2020; *22* : 488-502.
- Málaga DR, Brusius-Facchin AC, Siebert M, Pasqualim G, Saraiva-Pereira ML, Souza CFM, *et al.* Sensitivity, advantages, limitations, and clinical utility of targeted next-generation sequencing panels for the diagnosis of selected lysosomal storage disorders. *Genet Mol Biol* 2019; *42* (1 Suppl 1): 197-206.
- 8. Metzker ML. Sequencing technologies The next generation. *Nat Rev Genet* 2010; *11* : 31-46.
- 9. Kozarewa I, Armisen J, Gardner AF, Slatko BE, Hendrickson CL. Overview of target enrichment strategies. *Curr Protoc Mol Biol* 2015; *112* : 7.21.1-23.
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 2009; 25: 1754-60.
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, *et al.* The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 2010; 20: 1297-303.
- 12. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, *et al.* A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet* 2011; *43* : 491-8.
- 13. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res* 2010; *38* : e164.

- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* 2015; 17: 405-24.
- Giugliani R, Brusius-Facchin AC, Pasqualim G, Leistner-Segal S, Riegel M, Matte U. Current molecular genetics strategies for the diagnosis of lysosomal storage disorders. *Expert Rev Mol Diagn* 2016; *16*: 113-23.
- Verma J, Thomas DC, Kasper DC, Sharma C, Puri RD, Bijarnia-Mahay S, *et al*. Inherited metabolic disorders: Efficacy of enzyme assays on dried blood spots for the diagnosis of lysosomal storage disorders. *JIMD Rep* 2017; *31* : 15-27.
- Hernan I, Borràs E, de Sousa Dias M, Gamundi MJ, Mañé B, Llort G, *et al.* Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and nextgeneration sequencing. *J Mol Diagn* 2012; *14* : 286-93.
- de Sousa Dias M, Hernan I, Pascual B, Borràs E, Mañé B, Gamundi MJ, *et al.* Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing. *Mol Vis* 2013; *19*: 654-64.
- Jia H, Guo Y, Zhao W, Wang K. Long-range PCR in nextgeneration sequencing: Comparison of six enzymes and evaluation on the MiSeq sequencer. *Sci Rep* 2014; *4*: 5737.
- Maggi J, Koller S, Bähr L, Feil S, Kivrak Pfiffner F, Hanson JVM, *et al.* Long-range PCR-based NGS applications to diagnose mendelian retinal diseases. *Int J Mol Sci* 2021; 22: 1508.

For correspondence: Dr Prajnya Ranganath, Department of Medical Genetics, Specialty Block, Fourth Floor, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad 500 082, Telangana, India e-mail: prajnyaranganath@gmail.com

590

Supplementary Table	e. List of the lysosomal stor	age disorder	-associated gene	ss and details of the	long-range	polymerase chain reaction fragi	ments included in the study
Gene symbol and transcript id	Name of the disease	Size of the gene (bp)	LR-PCR primer sets	Exons covered by each primer set	PCR product size (bp)	Forward primer sequence	Reverse primer sequence
<i>GBA</i> ENST00000327247.9	Gaucher disease	11,440	GBA-1	1 to 11	7765	CGACTTTACA AACCTCCCTG	CCAGATCCTAT CTGTGCTGG
<i>SMPD1</i> ENST0000342245	Niemann-Pick disease A and B	6967	SMPD1-1	1 to 6	5996	ACTACCCACTTCC CAGACGAGTTCA	TAGGAGCTGGGGA GGGAGAGACTCTA
NPCI	Niemann-Pick	83,114	NPC1-1	1	4971	GACTTTCTCCTGCC	AGTCCCAAGTCAA
ENST00000269228	disease, Type C					CTCCTGTCTCCA	GTGTCCTGGCCAC
			NPC1-2	2 to 3	4227	CACTGACCCCTCC	GTGTGTCCTGGCCT
						CCTCCGCTGAATTT	TCAAGAGTCTCTG
			NPC1-3	4	4362	GACTCTCATCATGCA	AGCTCCCCAATTACC
						GTCCTTCCTCTCCCC	CCTCCCTGACAGTAG
			NPCI-4	5 to 6	4129	CGTGCCCGGCCAA	GCTGGGGGATGGGA
						CAGTATTAGGTT	GGTGTATGTAAG
			NPC1-5	7 to 9	5796	CTTACATACACCT	GGAGGGAGAGAGAGA
						CCCATCCCCAGC	ACAGTGAGAGGG
			NPC1-6	10 to 11	4939	CALTCCCTCTCACT	CAACCTGGCCTCCTA
						GTTCTCTCCCTCCC	AGTCCTCTCTTCCCA
			NPC1-7	12 to 14	4282	CGTCACCACCAGCA	ACTCACTCCTACTGTC
						GTCCATGAAACTTCC	CCAAGGTCACTCC
			NPC1-8	15 to 20	4611	GGGACAGTAGGAGTG	AACCCCGAGCAAAA
						AGTAGGGATTGTGGC	TGACCACCTCTGAGC
			NPCI-9	21 to 25	6167	GCAGCCAGTTACCC	GGCCTTTACAGAGTG
						ACGGAAGCCAGATAT	TCAGTGAGCGGATC
NPC2	Niemann-Pick	19,185	NPC2-1	1	857	TATTGGGTAG	GCAAAGGAG
ENST00000555619	disease, Type C		(Sanger)			TGCGGGAGGA	TTGGAAGGGG
			NPC2-2	2 to 5	7607	GCCTGTAATCCTAG	CTGTAATCCCTAAC
						CACTTTGGGGGGGCC	CCCTACCTGCCCTC
ARSA	Metachromatic	7819	ARSA-1	1 to 8	7319	CACGCACACAAC	TACCCAAGTGAGA
ENST00000216124	Leukodystrophy					AGACACCCCTAA	GGAAGTGGAGCA
IDUA	MPS Type I	19,909	IDUAI	1 to 2	4673	CACCTCAATTTCG	CATGTGTAGGAAG
ENST00000247933						TGGGTAGCTGGG	CAGCAGGAAGGG
			IDUA2	3 to 14	5660	CTCACTCCCTGT	GAAGAGACTGCGG
						CGTATCCCCTTCA	CCTTGGTTCCTG
							Contd

ame of the disease	Size of 1 the gene 1 (bp)	LR-PCR primer sets	Exons covered by each primer set	PCR product size (bp)	Forward primer sequence	Reverse primer sequence
	45,307	IDS-1	1 to 4	5719	CAGTACAGTGTAGG GCTAGGATTCCATCTC	TACCTTCCACCTCAC TTCCAAATCCTCACC
	Ċ,	IDS-2	5 to 7	11,105	CATGCCGTGTATC TGTCTCTGACCTA	GTTCTGGCCCTGA ATTACATGCTCTG
	ŗ	IDS-3	8 to 9	10,828	CATGAGTCAAAAGAC AGGTAGGCACAGGAC	CCTCTTTCTTTCTGG GGAGTCTCTGTACTG
15	,408	SGSH	1 to 8	14,661	GTGTCAGGAGGG TCACTATGGGTCT	TGGCAAGCTCTAT TCCCTCATCTCCT
6	478 <i>i</i>	NAGLU	1 to 6	8860	TCCTCGAACCTCCTA GCCTGTTAGTTACTC	CAGTGACCTTCTCAT TTTGACAGACCCAGG
43	,237 (GALNS-1	1	5007	CCCAGGGAAGAAG TAGAAAGAAG	GACCTTCAGCAAAC TCCAACAGACCTG
	Ŭ	GALNS-2	2 to 4	5355	CTTCTAGAGCAA	CTAGAGCACCCC
					AGTCCTGGCCCAC	GACATCCCTGAAC
	~	GALNS-3	5 to 9	7311	GTCGTCACTCTAA TCCCTCTCTC	CCACACAGTCATT
	Ŭ	GALNS-4	10 to 11	6472	CAATTACTAGGGAGC	CTAAGACAGGGGGGGA
					AGAGGTGGGGGGCAG	GCAGGACCAACATG
	-	GALNS-5	12 to 14	9834	GTCTTAGGGTTTCTG TAGGGATTCTGAGGG	CTTCCCCTTCCTTGT TCCTCATCTCTCTC
101,8	320 (GLB1-1		4158	GTAGAGACGGGGTTT	GTGAATGTCTGAGAG
					CATCATACTGGTCAG	GAGCACGATCTTGAG
	•	GLB1-2	2 to 5	8330	GATGAAGAGAGGGTA	GAAGAAGGAGAATGG
					GGGTTAGAGATGGGAC	GGCAGGAAGTAAGAG
	•	GLB1-3	6 to 9	8098	GGGGAGTGTGTGGGG	GAGGGAGAGTGTGG
					TCTGTGTAAATCTAGA	AATGAATGCTAATGGG
	~	GLBI-4	10	5319	CTAGAGGAGAGCAGG	GACTAGAGAGGGAC
	·					
	-	८- <i>1</i> ४७७)	11 to 12	5045	GAGGAI IGCAIACA TCACGGCCTTTACC	GGAAAGUU LUAA ACAATCAGCCTCAG
						Contd

Gene symbol and transcript id	Name of the disease	Size of the gene (bp)	LR-PCR primer sets	Exons covered by each primer set	PCR product size (bp)	Forward primer sequence	Reverse primer sequence
			GLB1-6	13 to 15	7241	CTCAAGAGATCCTCC	CCTGTTCGTATTCCT
						CCAAGTAACTGAGAC	TACCCTGGTCTTCTC
			GLB1-7	16	5558	CAAAGACTTTCCC	CGGCAGGATGACA
						TTCCTAGAGCCTGTG	GTATATTCCTCAGTG
GUSB	MPS type VII (Sly	22,830	GUSB-1	1 to 4	5820	TGATGTGTAGGG	TGCTCTATGGTG
ENST00000304895.8	disease)					ATTCACCACCC	CATTGTCTTTGC
			GUSB-2	5 to 8	4098	ACACAGAATT	GTGTGGTGGT
						CAGGACAGGC	TCACACCTGT
			GUSB-3	9 to 11	8450	GAGCAGGTGTTTG	GGATTAAACCAG
						AGGCTTCTTTGG	CTTCCCCAACTTT
			GUSB-4	11 to 12	4487	CTCACTGTGTC	GGGAACCAGC
						ACCCAAACT	TGCTCTGAAC
NEUI	Sialidosis/	7647	NEUI-1	1 to 6	5657	CTGTGACTCATTCTC	GAAGGTAGTGTCTGT
ENST00000375631	Mucolipidosis I					TCCACGACGACAGG	CTCTCAAGCCTCCC
GNPTAB	Mucolipidosis II	87,841	GNPTAB-1	1	117	CTATGCCCC	CATACTGTATC
ENST00000299314	alpha/beta and		(Sanger)			TCCGTCCTC	GGGGCATCG
	Mucolipidosis III		GNPTAB-2	2	86	GTATGTGGTAG	GTATATGTGCTG
	alpha/beta		(Sanger)			GCAGTAAGT	CTAAGTG
			GNPTAB-3	3 to 5	4816	CCAAGACTACTCT	GCTCCACCTCCC
						ACTTCACCCACG	AATACCATCATGC
			GNPTAB-4	6 to 7	4732	GAGACCAGGCCTC	CAGCCCTCTCCTC
						ACTCTGTCACCCA	TGACATGCGACGT
			GNPTAB-5	8 to 11	4809	GAGTGGTGTGGGACTT	TGAGGGAGAGGGGA
						TCGTAGGGGTGGC	AGAGCTGCTGAGGAG
			GNPTAB-6	12 to 15	6862	CTCTCCAGCA	CTCCAGCTAGCCA
						GCTCTTCCCTCTC	CACCTGAAGTCC
			GNPTAB-7	16 to 18	3542	GGAAAGGAGCCAG	GGGACCCTATCTCAA
						ACCATACCTGCAT	CTTGCAACTCCTATC
			GNPTAB-8	19 to 21	9035	CTCCCATAGCTAAA	CCACCTACCTCTTC
						AGGCCATCTACCCTAG	CTCTAACTGGTTGTA
GNPTG	Mucolipidosis III	13,391	GNPTG-1	1 to 3	4209	AACCCTGACCCG	CTCCCAGCCTGAC
ENST00000204679	gamma					CTCTCCCCATCAC	CCCTGCAACTCA
							Contd

Gene symbol and transcript id	Name of the disease	Size of the gene (bp)	LR-PCR primer sets	Exons covered by each primer set	PCR product size (bp)	Forward primer sequence	Reverse primer sequence
			GNPTG-2	4 to 11	4268	GTGCGTGGATAAT	GACGTGTTTCTCCC
				t		TGTGGTGTCTTGGC	CGACCGTGGCTTT
MC0LNI ENST00000264079	Mucolipidosis Type IV	13,783	MCOLNI-1	1 to 7	6495	GAALGTIGGAAGA CTCTGGGCTGGGG	GAAGGACAGGGA GCAGGTGAGGATGA
			MCOLNI-2	7 to 14	6715	CTGGTCAGGGAGT	GGATTAGTGGGTG
						GTCTTGGGGGGCA	GGGATGCGGGGT
GAA	Pompe disease	19,524	GAA-1	1 to 2	5610	GATGAGGCAGCAG	CTCTCAGGGCATA
ENST00000302262.7						GTAGGACAGTGA	TCAGAAGAGGCG
			<i>GAA</i> -2	3 to 14	8235	CGTCAGGGAGTGG	GTAACAGCACAGAG
						I CAI UCAUAUAU	UAAUUAUAUUU
			GAA-3	15 to 20	4532	GGAGCACCGTCAA	TGACATGGGGGAG
						CACTTAGCTAGG	GGTAGGTGAGGAG
HEX4	GM2 gangliosidosis -	36,758	HEX4-1	1	475	TGATTCGCCGA	CTCGAGGAGG
ENST00000268097.9	Tay-Sachs disease		(Sanger)			TAAGTCACG	AAGTGGAGTG
			HEX4-2	2 to7	7583	GCCTCCTCTGCCT	TGGCCCAGAGAC
						GATCCTTCTGTC	TACTTCCTGACGC
			HEX4-3	8 to14	9518	TACCCTCAGCCCT	GCTGGGACTACAA
						CCAGTGTGAGCC	CCACACACCACCA
HEXB	GM2 gangliosidosis -	83,825	HEXB-1	1	907	GGCAAACCC	GGTCCCTCCC
ENST00000511181.5	Sandhoff disease		(Sanger)			TGTTTCGACA	AGATCCATTG
			HEXB-2	2 to 9	10,013	TTCCGCAACTGAG	GACTCTGACCAC
						CACTTATAGGCC	ATGTTCACAGGCA
GALC	Krabbe disease	143,640	GALC-1	1 to 4	7760	CGCCTCATCTCACAT	CAATGATCCTCCCAA
ENST00000261304.6						AAGGGAAAACTCAGG	TAGAACCTAAGCCCC
			GALC-2	5 to 7	10,340	GGGCTTAGGTTCTAT	GGAAAGGAAGAGGA
						TGGGAGGATCATTGG	GTAGATAGACGCATGG
			GALC-3	8 to 10	6698	TTCTAAGGACAGGA	GACTACGATGAAGTG
						GTAGTGGGGGGGGGGGGGGCAC	TAGATTCTGGGGGGGG
			GALC-4	11 to 14	7277	GGTGTAGTTTGGTC	GAGCCCTCTATGGT
						AGTGTTCCATGTGC	ATTCAAGTGCATGG
			GALC-5	15 to 17	11,056	CAGAGGACATACAA	GATGCAGGTGAGGCTG
						GAGAGACTGGGGCTT	TGGAGAAATAGAAG
							Contd

Gene symbol and transcript id	Name of the disease	Size of the gene (bp)	LR-PCR primer sets	Exons covered by each primer set	PCR product size (bp)	Forward primer sequence	Reverse primer sequence
GLA	Fabry disease	11,323	GLA	1 to 7	10,756	ACACATACACAG	AGGTGGACAGGA
ENST00000218516.3						TCATGAGCGTCCAC	AGTAGTAGTTGGCA
ASAHI	Farber	30,207	ASAH-1	1	895	CTCAACTGCT	TGCGAATCAC
ENST00000637790.1			(Sanger)			CCTTGTCCCT	ACCCAGGTAT
			ASAH1-2	2 to 4	6887	CATGGAAGGGTGAGA	CCCTAGGTGTTTCAT
						GATGATAGGAAGTGC	TGGTTCTGCGTCAAC
			ASAH1-3	5 to 14	12,236	GAGGGTGAATTCGTG	GGGTTTGCTGAGGAG
						CAGAGAGATAAGGAG	GTAATCTAGGTCAAG
PCR, polymerase chain 1	reaction; LR-PCR, long-rat	nge PCR; MI	PS, mucopolysad	charidosis			