Correspondence

Optimization of loop-mediated isothermal amplification-based method for detection of macrolide–lincosamide–streptogramin B resistance in *Staphylococcus aureus*

Sir,

The growing interest in the resistance of Staphylococcus aureus to various antibiotics in the last two decades has led to re-considerations around usage of macrolide-lincosamide-streptogramin B (MLS) antibiotics as erythromycin and clindamycin since long have been potent options for treating both methicillinresistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). Unfortunately, in due course of time, resistance to MLS_b antibiotics emerged in staphylococci and spread to different regions¹⁻³. The common mechanisms of resistance to MLS_k antibiotics are efflux of antibiotics by the *msrA* gene, target site modification mediated by erm genes and inactivation of macrolides mediated by mphC genes⁴. To date, detection of MLS₁ resistance in S. aureus has relied on traditional phenotypic methods such as agar dilution technique, double-disc diffusion test and PCR-based molecular methods^{1-3,5}. Although these methods exist for detection, these are time-consuming and require sophisticated laboratory equipment and reagents as well as ample technical expertise preventing the use of these techniques in low resource settings. This study was performed to explore the utility of a recently developed alternative technique called loop-mediated isothermal amplification (LAMP). It is a novel singlestep technique where four to six sets of primers bind to distinct regions of the target DNA⁶. This assay has higher sensitivity and specificity in comparison to the conventional methods and allows users with low resources to avoid expensive equipment, reagents and tedious protocols⁷⁻⁹.

In this study, of the 168 clinical isolates of *S. aureus*, 40, which showed resistance to different MLS_b antibiotics, were included. The MLS_b -resistant phenotypes were determined by D-zone/disc diffusion test as per CLSI 2017 guidelines¹⁰. *S. aureus* 25923

was used as a control strain. Of the 40 isolates, exhibiting MLS_b resistance, 20 (50%) expressed constitutive MLS_{h} (cMLS_h) phenotype, seven (17.5%) isolates expressed inducible MLS₁ (iMLS₁) phenotype and 13 (32.5%) expressed MS_b phenotype. Total DNA from all the bacterial strains was extracted by boiling centrifugation method - to be used as a template. A conventional polymerase chain reaction (PCR) was performed with oligonucleotide primers (Supplementary Table I) targeting the MLS_b resistance genes ermA, ermB, ermC, lnu, msrA and mphC. Each single reaction mixture (25 µl) contained 2 µl of template DNA (100 ng/µl), 1 µl each of primer (10 picomoles), 12.5 µl GoTaq Green Master Mix 2X DNA Polymerase (Promega, Madison, USA) and molecular grade nuclease free water. The PCR reactions were performed in a thermal cycler with 35 cycles of initiation, annealing and extension. The PCR assay revealed that of the 40 isolates, 34 (85%) harboured *msrA* and *mphC* genes either alone or in combination. No other MLS_b resistance genes could be detected in the remaining six (15%) isolates. The details of the MLS_b resistance profile of all the 40 isolates are given in Supplementary Table II.

Sequences of *msrA* (Accession No. KX211999) and *mphC* (Accession No. GQ183071) genes were retrieved from NCBI nucleotide database. Six sets of primers, namely two inner primers (FIP and BIP), two outer primers (F3 and B3) and two loop primers (LFP and BFP) targeting six distinct regions, were designed for each of these genes using LAMP PrimerExplorer V4 (*http://prjjjimerexplorer.jp*). The sequences of the designed LAMP primers are listed in Table. The positions of the LAMP primers in *msrA* and *mphC* gene fragment are given in Supplementary Figures 1 and 2. The specificity of the primers was validated by amplifying the genes with outer primers (F3 and B3).

^{© 2023} Indian Journal of Medical Research, published by Wolters Kluwer - Medknow for Director-General, Indian Council of Medical Research

Table. Sequences of loop-mediated isothermal amplification primers targeting msrA and mphC genes of Staphylococcus aureus used					
in the present study					
msrA					
Primer	Sequence (5'-3')	Length			
FIP (F1c+F2)	ACGAGCGCTATATTTTTGCCATAT-GAAGTCAAAAACTGCTAACACA	46			
BIP (B1c+B2)	TACCACCAAATAGAGGGAATTGATT-TTCATAAGCAAGTTGACGATAG	47			
F3	ATTGCACAAAATCTAACATTGG	22			
В3	TGAAACGTCACGCATGTC	18			
LFP	GGTATTTGGAATCGTAC	17			
LBP	GTTCTCCTAAAGTGC	15			
mphC					
Primer	Sequence (5'-3')	Length			
FIP (F1c+F2)	TGGATGTAAGTCTCCATGTATCATG-AATGGTTAGAAAACGACGAACT	47			
BIP (B1c+B2)	TTACCAAGCAAATGTCATAGGACT-TCCATTGACGGATCGGAG	42			
F3	GGATTATGGAACAGATGGAAAC	22			
В3	AATACACGATGGTATCCCAT	20			
LFP	TTGCACGTCGAGGCCAC	17			
LBP	AGACTGGACTGAAGCAACCT	20			
FIP, forward inner primer; BIP, backward inner primer; LFP, loop forward primer; LBP, loop backward primer					

The LAMP reaction mixture was optimized by modifying the components of the reaction mixtures, reaction duration (30-60 min) and incubation temperature (55-65°C). The 25 µl optimized reaction mixture contained 2.5 µl 10X ThermoPol buffer (NEB, England), 1.5 µl MgSO₄ (NEB, England), 3.5 µl dNTP mix (1.4 mM each, HiMedia, India), 4 μ l of primer mix (2 μ M FIP, 2 μ M BIP, 1.2 μ M F3, 1.2 µM B3, 1.6 µM LF and 1.6 µM BF), 1 µl Bst DNA polymerase (NEB, England) and 2 μ l (100 ng) template. To optimize reaction temperature, the reaction mixture was incubated at different temperatures. The temperatures were increased from 55 to 65°C, *i.e.* 55°C, 57°C, 62°C and 65°C, for different lengths of time, *i.e.* 30, 40, 50 and 60 min, followed by heating to 80°C for 10 min for enzyme inactivation to stop the reaction. The incubation was carried out in a thermal cycler. S. aureus ATCC 25,923 without any MLS_b resistance genes was used as a negative control. A no template control containing 5 µl sterile water was also simultaneously run. Various modes are available for detection of LAMP products. Naked-eye detection by addition of metal indicators, fluorescence detection with intercalating agents, lateral flow and agarose gel electrophoresis - all are compatible with LAMP reactions. In this study, the LAMP products were electrophoresed in two per cent agarose gel and visualized in an ultraviolet light transilluminator in a Gel Doc EZ imager (Bio-Rad,

USA) to confirm the amplification. The presence of ladder-like bands is the typical electrophoresis pattern of amplification by LAMP reaction¹⁵. The optimum reaction temperature and duration were found to be 65°C and 60 min, respectively, as the best intensity ladder-like pattern was observed in this reaction condition (Fig. A and B). All the 40 clinical isolates were assessed by LAMP assay. It was observed that the optimized LAMP assay was able to detect the presence of *msrA* and *mphC* genes in all 34 isolates as was detected with conventional PCR assay. No non-specific reaction was observed in the remaining six isolates as well as in *S. aureus ATCC 25923* isolate, which tested negative by PCR.

 MLS_{b} antibiotics have been potent options for treating both MRSA and MSSA in India since long. Acquired genes such as *msrA* and *mphC*, which code for ATP-dependent efflux pumps and phosphotransferases, respectively, confer strong resistance to 14- and 15-membered macrolides and streptogramin B¹⁶. Due to high prevalence of MLS_b resistance genes, early detection and timely clinical intervention is necessary to contain their further spread. Although conventional phenotypic and molecular detection techniques such as D-zone test and PCR are available, these are time-consuming and resource intensive. Moreover, in phenotypic tests such as D-zone test, the results are often affected owing to numerous factors such as inoculum size,

Figure. (A) Electrophoretic analysis of LAMP-amplified *msrA* gene in *S. aureus* at 65, 62 and 57°C. (A) Lane L, 100 bp DNA ladder; Lanes 4 and 6, Characteristic ladder pattern at 65°C; Lanes 2 and 5, Faint smear at 62°C; Lanes 3 and 7, Faint smear at 57°C; Lane 8, No characteristic pattern in *E. coli*; Lane 9, no template control; (B) Electrophoretic analysis of LAMP-amplified *mphC* gene in *S. aureus* at 65, 62 and 57°C. Lane L, 100 bp DNA ladder; Lane 1, Characteristic ladder pattern at 65°C; Lane 5, Ladder-like pattern at 62°C; Lane 4, no characteristic pattern at 57°C; Lane 3, No characteristic pattern in *E. coli*; Lane 9, no template control.

formulation of media, rate of growth, incubation condition and duration^{17,18}. In conventional nucleic acid-based detection methods such as PCR, the use of sophisticated instruments, high cost of reagents and the employment of highly qualified personnel for handling, are the main constraints in low-resource laboratories. Moreover, conventional PCR requires 35 cycles or more for the production of large quantity of amplicons which could increase the chances of generation of undesirable secondary amplicons^{19,20}. It is, therefore, important for the routine microbiology laboratories to have access to a user-friendly method for rapid identification of resistant strains, which will facilitate early clinical intervention.

With this need in view, the present study optimized a LAMP assay for the purpose of detecting MLS_b resistance genes *msrA* and *mphC* in clinical isolates of *S. aureus.* In this study, at an optimum temperature of 65°C, the LAMP assay could yield result in 60 min of incubation. This is one of the outstanding features of LAMP where the amplification proceeds at a constant temperature by Bst exopolymerase having high strand displacement activity⁶. This effectively eliminates the need for tedious optimization of cycling conditions as required in PCR. The results of the LAMP assay were compared with that of the conventional PCR, and it was observed that the LAMP results were consistent with that of traditional PCR based analysis. No non-specific reaction with PCR-negative isolates was observed. This shows very high specificity of the LAMP assay while accurately detecting the genes *msrA* and *mphC*. Other studies have also shown that the LAMP assay is a good alternative to conventional PCR-based methods for its specificity and uniform temperature requirements, making it more convenient for microbiology laboratories to perform on a routine basis^{8,20}. The specificity is generally high because the assay uses four sets of primers, which identify a number of distinct locations in the target DNA, thus eliminating the chances of primer mismatch, which often occurs in PCR. Our study came up with four sets of specific primers for each gene, which recognized six distinct regions. In addition to the inner and outer primers, loop primers were also designed, which identified distinct locations in each of the genes, and characteristic ladder pattern bands demonstrated the efficacy of the designed primers. LAMP products can also be easily visualized with naked eye in resourcepoor areas where agarose gel electrophoresis and a gel documentation system are unavailable. Colorimetric detection with the addition of metal indicators and fluorescent detection with the addition of intercalating agents are some of the simple detection techniques, which are feasible in low-resource settings. However, cost evaluation and impact on therapeutic intervention should be carried out before considering its routine implementation in clinical microbiology laboratories. Another important feature of LAMP assay is its short operation time. The optimized LAMP assay in the present investigation had an operating time of 60 min as opposed to 90 min of the conventional PCR assay. Since the reaction proceeds at a constant temperature, the time loss due to temperature changes at different stages of amplification in conventional PCR is prevented²¹. The advantage of LAMP is not only in saving time but also due to its use of six sets of specific primers, which recognize distinct regions of the gene, making it more specific, and hence reducing the chances of non-specific amplification and false-positive reactions as compared to the conventional PCR. Short operation time and the use of six sets of specific primers thus give the LAMPassay an edge over conventional PCR.

In conclusion, because MLS_b resistance in *S. aureus* is an emerging threat and timely diagnosis and appropriate use of antibiotics is required, the LAMP assay optimized in this study has the potential to be adapted in any microbiology laboratory. This will also help in estimating resistance burden and informing appropriate therapy at a larger scale.

Acknowledgment: The authors acknowledge Biotech Hub, Assam University, Silchar, India, for providing the infrastructure.

Financial support & sponsorship: The authors received financial support from Science and Engineering Research Board, Department of Science and Technology, Government of India vide no. (DST No.: EMR/2016/0055226).

Conflicts of Interest: None.

Chandrayee Deshamukhya¹, Deepshikha Bhowmik¹, Debadatta Dhar (Chanda)² & Amitabha Bhattacharjee^{1*}

¹Department of Microbiology, Assam University & ²Department of Microbiology, Silchar Medical College & Hospital, Silchar, Assam, India **For correspondence:* ab0404@gmail.com

Received November 12, 2021

References

- Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. Detection of macrolide and disinfectant resistance genes in clinical *Staphylococcus aureus* and coagulase-negative staphylococci. *BMC Res Notes* 2011; 4: 453.
- Lall M, Sahni AK. Prevalence of inducible clindamycin resistance in *Staphylococcus aureus* isolated from clinical samples. *Med J Armed Forces India* 2014; 70: 43-7.
- Mišić M, Čukić J, Vidanović D, Šekler M, Matić S, Vukašinović M, *et al.* Prevalence of genotypes that determine resistance of staphylococci to macrolides and lincosamides in serbia. *Front Public Health* 2017; 5 : 200.
- Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolidelincosamide-streptogramin B resistance determinants. *Antimicrob Agents Chemother* 1999; 43 : 2823-30.
- Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in staphylococci. *J Med Microbiol* 2007; 56: 342-5.
- Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases. *J Infect Chemother* 2009; 15: 62-9.

- Cai XQ, Xu MJ, Wang YH, Qiu DY, Liu GX, Lin A, et al. Sensitive and rapid detection of *Clonorchis sinensis* infection in fish by loop-mediated isothermal amplification (LAMP). *Parasitol Res* 2010; 106 : 1379-83.
- Khan M, Wang R, Li B, Liu P, Weng Q, Chen Q. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of *Alternaria solani*. *Front Microbiol* 2018; 9 : 2089.
- Rahman SM, Song HB, Jin Y, Oh JK, Lim MK, Hong ST, et al. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of *Clonorchis sinensis* in human fecal samples. *PLoS Negl Trop Dis* 2017; 11 : e0005995.
- 10. Clinical and Laboratory Standards Institute. *Performance standards for antimicrobial susceptibility testing; twenty-first informational supplements, M100-S27.* Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
- Hauschild T, Schwarz S. Macrolide resistance in *Staphylococcus* spp. from free-living small mammals. *Vet Microbiol* 2010; *144*: 530-1.
- Duran N, Ozer B, Duran GG, Onlen Y, Demir C. Antibiotic resistance genes & susceptibility patterns in staphylococci. *Indian J Med Res* 2012; 135 : 389-96.
- Allignet J, Loncle V, Simenel C, Delepierre M, el Solh N. Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. *Gene* 1993; *130*: 91-8.
- Si H, Zhang WJ, Chu S, Wang XM, Dai L, Hua X, et al. Novel plasmid-borne multidrug resistance gene cluster including lsa(E) from a linezolid-resistant Enterococcus faecium isolate of swine origin. Antimicrob Agents Chemother 2015; 59: 7113-6.
- 15. Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. *Nat Protoc* 2008; *3* : 877-82.
- 16. Juda M, Chudzik-Rzad B, Malm A. The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant *Staphylococcus epidermidis*. *Mem Inst Oswaldo Cruz* 2016; *111* : 155-60.
- Yusuf E, de Bel A, Bouasse J, Piérard D. D-Zone test for detection of inducible clindamycin resistance using SirScan paper disks and Rosco Neo-Sensitabs at 25 and 15 mm distances. *J Med Microbiol* 2014; 63 : 1052-4.
- Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. *Diagnostics (Basel)* 2019; 9:49.
- Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. *Clin Microbiol Rev* 2014; 27: 783-822.
- 20. Foo PC, Nurul Najian AB, Muhamad NA, Ahamad M, Mohamed M, Yean Yean C, *et al.* Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute

for diagnostic applications: A comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and realtime PCR (qPCR) based on *Entamoeba histolytica* DNA derived from faecal sample. *BMC Biotechnol* 2020; 20: 34. 21. Wong YP, Othman S, Lau YL, Radu S, Chee HY. Loopmediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. *J Appl Microbiol* 2018; *124* : 626-43.

Supplementary Table I. The list of oligonucleotide primers used in the study					
Primer name	Primer pairs	Product length (bp)	Reference		
mphC (F)	5'-ACTTACAGGCAAACCCGCAG-3'	412	Hauschild and Schwarz 2010 ¹¹		
mphC(R)	5'-GTCCATTGACGGATCGGAGT-3'				
msr A (F)	5'-TCCAATCATTGCACAAAATC-3'	163	Duran <i>et al.</i> , 2012 ¹²		
msr A (R)	5'-AATTCCCTCTATTTGGTGGT-3'				
erm A (F)	5'-AAGCGGTAAACCCCTCTGA-3'	190	Duran <i>et al.</i> , 2012 ¹²		
erm A (R)	5'-TTCGCAAATCCCTTCTCAAC-3'				
erm B (F)	5'-CTATCTGATTGTTGAAGAAGGATT-3'	142	Duran <i>et al.</i> , 2012 ¹²		
erm B(R)	5'-GTTTACTCTTGGTTTAGGATGAAA-3'				
erm C(F)	5'-AATCGTCAATTCCTGCATGT-3'	299	Duran <i>et al.</i> , 2012 ¹²		
$erm C(\mathbf{R})$	5'-TAATCGTGGAATACGGGTTTG-3'				
vga (F)	5'-CGCCATCTGTCAAAATCGGT-3'	191	Allignet <i>et al.</i> , 1993 ¹³		
vga (R)	5'-AACTCGCTCTCCACCACTTA-3'				
<i>lnu B</i> (F)	5'-GATGTACGACGCACCAAACG-3'	345	Si <i>et al.</i> , 2015 ¹⁴		
lnu B (R)	5'-CCAGTTCTTGGCGGTAAGGT-3'				

Supplementary Table II. Macrolide-lincosamide-streptogramin B resistance profile of the study isolates					
Isolate ID	$\mathrm{MLS}_{\mathrm{b}}$ resistance phenotypes as detected	Resistance profile	Detection by PCR		
	by D-zone/double-disc diffusion test		(<i>msrA</i> and <i>mphC</i>)		
CS1	cMLS _b	ERY-R, CLI-R	msrA		
CS8	cMLS _b	ERY-R, CLI-R	msrA		
CS4	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	msrA		
CS14	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	msrA		
CS17	MS_{b}	ERY-R, CLI-S	msrA		
CS15	MS_{b}	ERY-R, CLI-S	msrA		
CS21	MS_{b}	ERY-R, CLI-S	msrA		
CS23	cMLS _b	ERY-R, CLI-R	msrA		
CS22	cMLS _b	ERY-R, CLI-R	msrA		
CS26	MS_{b}	ERY-R, CLI-S	msrA		
CS27	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	msrA		
CS30	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	msrA		
CS32	cMLS _b	ERY-R, CLI-R	msrA		
CS35	cMLS _b	ERY-R, CLI-R	msrA		
CS37	cMLS _b	ERY-R, CLI-R	msrA		
CS39	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	msrA		
CS2	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS5	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS6	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	msrA, mphC		
CS9	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS10	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS12	MS_{b}	ERY-R, CLI-S	msrA, mphC		
CS16	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS19	MS_{b}	ERY-R, CLI-S	msrA, mphC		
CS24	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS25	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS28	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS29	MS_{b}	ERY-R, CLI-S	msrA, mphC		
CS31	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS33	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS34	MS_{b}	ERY-R, CLI-S	msrA, mphC		
CS36	cMLS _b	ERY-R, CLI-R	msrA, mphC		
CS38	MS_{b}	ERY-R, CLI-S	msrA, mphC		
CS40	MS_{b}	ERY-R, CLI-S	msrA, mphC		
CS3	MS_{b}	ERY-R, CLI-S	Negative		
CS7	MS _b	ERY-R, CLI-S	Negative		
CS11	cMLS _b	ERY-R, CLI-R	Negative		
CS13	MS_{b}	ERY-R, CLI-S	Negative		
CS18	iMLS _b	ERY-R, CLI-S (D-shaped zone of inhibition)	Negative		
CS20	cMLS _b	ERY-R, CLI-R	Negative		
*ERY-R, ery	thromycin resistant; *CLI-R, clindamycin res	istant; *CLI-S, clindamycin susceptible; MLS,, m	acrolide-lincosamide-		

streptogramin B; $cMLS_b$; $constitutive MLS_b$; $iMLS_b$; $iMLS_b$; PCR, polymerase chain reaction; MS_b , macrolide-streptograminb

F3

TTAAATGAAGCACTTGAGCGTTCTTGTAATGTTTTGAGTGGTGGGGGAAAGAACGAAATTATCGTTAGCAGTAT TATTTTCAACGAAAGCGAATATGTTAATTTTGGATGAACCAACTAATTTTTTAGATATTAAAACATTAGAAGCA TTAGAAATGTTTATGAATAAATATCCTGGAATCATTTTGTTTACATCACATGATACAAGGTTTGTTAAACATGT ATCAGATAAAAAATGGGAATTAACAGGACAATCTATTCATGATATAACTTAA

Supplementary Fig. 1. Location of the primer sequences used in LAMP assay. The positions of the LAMP primers of *msrA* gene fragment of *Staphylococcus aureus* (Accession No. KX211999) are shown. Left and right arrows show complementary and sense sequences. F3 and B3 are outer primers; FIP (F1c + F2) is forward inner primer; BIP (B1c + B2) is backward inner primer.

Supplementary Fig. 2. Location of the primer sequences used in LAMP assay. The positions of the LAMP primers of *mphC* gene fragment of *Staphylococcus aureus* (Accession No. GQ183071) are shown. Left and right arrows show complementary and sense sequences. F3 and B3 are outer primers; FIP (F1c + F2) is forward inner primer; BIP (B1c + B2) is backward inner primer.