Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 356       
REVIEW ARTICLE
Year : 2013  |  Volume : 138  |  Issue : 1  |  Page : 38-59

New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India


1 Global Snakebite Initiative, P.O. Box 193, Herston, Qld, 4029, Australia; Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
2 Global Snakebite Initiative, P.O. Box 193, Herston, Qld, 4029, Australia; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
3 Global Snakebite Initiative, P.O. Box 193, Herston, Qld, 4029, Australia; Laboratorio de Venómica y Proteinómíca Estructural, Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
4 Global Snakebite Initiative, P.O. Box 193, Herston, Qld, 4029, Australia; Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010. Australia; School of Medicine & Health Sciences, University of Papua New Guinea, Boroko, NCD, Papua New Guinea

Correspondence Address:
David A Warrell
Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK

Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 24056555

Rights and PermissionsRights and Permissions

The direct estimate of 46,000 snakebite deaths in India in 2005 (1 for every 2 HIV/AIDS deaths), based on verbal autopsies, renders unrealistic the total of only 47,000 snakebite deaths in the whole world in 2010, obtained indirectly as part of the "Global Burden of Disease 2010" study. Persistent underestimation of its true morbidity and mortality has made snakebite the most neglected of all the WHO's "neglected tropical diseases", downgrading its public health importance. Strategies to address this neglect should include the improvement of antivenom, the only specific antidote to envenoming. To accommodate increased understanding of geographical intraspecific variation in venom composition and the range of snake species that are medically important in India, the design of antivenoms (choice of venom sources and species coverage) should be reconsidered. Methods of preclinical and clinical testing should be improved. The relatively new science of venomics involves techniques and strategies for assessing the toxin composition of snake venoms directly through proteomics-centred approaches or indirectly via high-throughput venom gland transcriptomics and bioinformatic analysis. Antivenomics is translational venomics: a proteomics-based protocol to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venoms. These approaches could revolutionize the preclinical assessment of antivenom efficacy, leading to a new generation of antivenoms that are clinically more effective.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4968    
    Printed24    
    Emailed1    
    PDF Downloaded475    
    Comments [Add]    

Recommend this journal